Gọi O là một điểm bất kỳ trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh BC, AC, AB theo thứ tự A', B', C'. Chứng minh rằng: \(\frac{AC'}{C'B}\cdot\frac{BA'}{A'C}\cdot\frac{CB'}{B'A}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Qua A vẽ đường thẳng song song với BC cắt BB' cà CC' lần lượt ở N,M
+ ΔAB'N có AN // BC
\(\Rightarrow\dfrac{CB'}{B'A}=\dfrac{CB}{AN}\)
+ Tương tự : \(\dfrac{AC'}{C'B}=\dfrac{AM}{BC}\)
+ ΔAOM có AM // BC
\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AO}{OA'}\)
+ tương tự : \(\dfrac{AN}{BA'}=\dfrac{AO}{OA'}\)
\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AN}{BA'}\Rightarrow\dfrac{AN}{AM}=\dfrac{BA'}{A'C}\)
Do đó : \(\dfrac{AC'}{C'B}\cdot\dfrac{BA'}{A'C}\cdot\dfrac{CB'}{B'A}=\dfrac{AM}{BC}\cdot\dfrac{AN}{AM}\cdot\dfrac{BC}{AN}=1\)
Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q
Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)
Nhân 3 đẳng thức vs nhau ta đc:
\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)
Mình cũng không biết nhưng nếu bạn nghĩ như vậy thì hãy thử làm xem ạ!