Cho tam giác ABC, trung tuyến AD, điểm P di động trên cạnh BC, qua P kẻ đường thẳng d//AD, d cắt AB, AC theo thứ tự tại M và N. Chứng minh:
PM+PN=2.AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MP/AD=BP/BD=BM/AB
=>MP*BD=BP*AD
AD/NP=CD/CP
=>AD*CP=NP*CD
=>MP*BD+CD*NP=BP*AD+AD*CP
=>MP+NP=2AD
=>PM+PN ko đổi
qua N kẻ đường thẳng song song với AB cắt BC tại K .
Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)
nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC
Suy ra DM+EN=BK+CK=BC(dpcm)