K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

éo biết

1 tháng 2 2018

éo có tên ko biết thì đừng có thô lỗ quá nhá!

20 tháng 2 2018

Hello mạnh già

4 tháng 10 2017

Chọn D

Cách 1:

 

Gọi các điểm được đánh dấu để chia đều các cạnh của tứ diện đều ABCD như hình vẽ.

+ Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Số phần tử của S là số cách chọn ra 3 điểm không thẳng hàng trong số 18 điểm đã cho.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách.

Chọn ra 3 điểm thẳng hàng trong 18 điểm trên có 6. C 6 3 = 6 cách.

Suy ra số tam giác thỏa mãn là  C 18 3 - 6 = 810

+ Gọi T là tập hợp các tam giác lấy từ ABCD sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện ABCD.

- Chọn 1 cạnh của tứ diện để mặt phẳng chứa tam giác chỉ song song với đúng cạnh đó: có  C 6 1  cách.

Xét các tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD, suy ra tam giác đó phải có một cạnh song song với BD.

- Có 6 cách chọn cạnh song song với BD là

- Giả sử ta chọn cạnh  M 2 N 2  là cạnh của tam giác. Cần chọn đỉnh thứ 3 của tam giác trong 16 điểm còn lại. 

Do  M 2 N 2 ⊂ (ABD) mà mặt phẳng chứa tam giác song song với BD nên đỉnh thứ 3 không thể là 7 điểm còn lại nằm trong mp(ABD).

Do mặt phẳng chứa tam giác chỉ song song với BD nên đỉnh thứ 3 không được trùng với một trong ba điểm E 2 ,   F 2 ,   P 2 . Vậy đỉnh thứ 3 chỉ được chọn trong 16 -7 - 3 = 6 điểm còn lại.

Suy ra có 6 tam giác có 1 cạnh là  M 2 N 2 và mặt phẳng chứa nó chỉ song song với BD.

Vậy số tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD là: 6.6 = 36.

Tương tự cho các trường hợp khác, ta có số tam giác mà mặt phẳng chứa nó chỉ song song với đúng một cạnh của tứ diện ABCD là: 36.6 = 216.

Vậy xác suất cần tìm là 

Cách 2: Lưu Thêm

+) Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách. 

Trong số  C 18 3  đó, có 6 cách chọn ra 3 điểm thẳng hàng trên các cạnh.

Suy ra n(S) =  C 18 3 - 6 = 810

+) Xét phép thử: “Lấy ngẫu nhiên một phần thử thuộc S”. Ta có

+) Gọi T là biến cố: “Mặt phẳng chứa tam giác được chọn song song với đúng một cạnh của tứ diện đã cho”.

Chọn một cạnh của tứ diện: 6 cách, (giả sử chọn AB).

Chọn đường thẳng song song với AB: 6 cách, (giả sử chọn PQ).

Chọn đỉnh thứ 3: 6 cách, (M, N, E, K, F, I).

Suy ra n(T) = 6.6.6 = 216

Vậy 

4 tháng 6 2017

bài này dùng nguyên lý drichlet toán rời rạc

Giả sử từ điểm A trong 17 điểm đã cho nối với 16 điểm còn lại bằng 3 loại màu => Theo nguyên lý Dirichlet có ít nhất 6 đoạn thẳng cùng một màu, giả sử đó là các đoạn thẳng AB1; AB2; …;AB6 cùng được tô màu đỏ.

Nếu có 2 trong 6 điểm B1; B2; ..; B6 được nối với nhau bằng màu đỏ thì bài toán được chứng minh. Nếu không có 2 điểm nào được nối với nhau bằng màu đỏ thì 6 điểm này được nối với nhau bằng hai màu xanh hoặc vàng.

Từ điểm B1 ta nối với 5 điểm còn lại Þ Có 5 đoạn thẳng mà chỉ có 2 màu => Theo nguyên lý Diricle có ít nhất 3 đoạn thẳng cùng màu, giả sử đó là 3 đoạn thẳng B1B2, B1B3, B1B4 có cùng màu xanh.

Xét tam giác B2B3B4

TH1: nếu 3 cạnh của tam giác này cùng màu thì bài toán đã được giải xong.

TH2: 3 cạnh của tam giác không cùng màu thì sẽ có ít nhất 1 cạnh có màu xanh giả sử đó là cạnh B2B3 => Tam giác B1B2B3 có ba cạnh cùng màu xanh.

Vậycó đpcm

6 tháng 12 2017

Có 17 điểm => có 153 đường thẳng được tạo thành. 
Có 969 tam giác được tạo thành 
Có 153 đường thẳng mà tới 969 tam giác được tạo thành 
=> phải có tam giác có 3 cạnh cùng màu

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

TH1: Cạnh bên bằng 30 cm

Khi đó cạnh đáy bằng: 120 – (30 + 30 ) =60 (cm)

Vì 30 + 30 = 60 nên bộ 3 độ dài này không tạo được thành tam giác.

TH2: Cạnh đáy bằng 30 cm

Khi đó cạnh bên bằng: (120 – 30) : 2 = 45 (cm)

Đánh dấu AB = CD = 45 cm.