K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

a) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2\)

\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)

\(=\left(x+y+z\right)\left(xy+xz\right)+yz\left(y+z\right)\)

\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=\left(y+z\right)\left(x+y\right)\left(x+z\right)\)

b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z+x\right)\)

\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)

P/s: Sai sót xin bỏ qua.

20 tháng 10 2018

     

       \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)

19 tháng 10 2019

nick ko hay rồi tcn còn ko hay nữa

20 tháng 10 2018

\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz.\)

\(=x^2.\left(y+z\right)+yz.\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)

\(=\left(y+z\right).\left(x^2+yz\right)+x\left(y^{^2}+z^2+2yz\right)\)

\(=\left(y+z\right).\left[x.\left(x+2\right)+y.\left(x+2\right)\right]\)

\(=\left(y+z\right).\left(x+z\right).\left(x+y\right)\)

8 tháng 3 2020

Ta có: \(x^2y-xy^2+y^2z-yz^2+xz^2-x^2z=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left(x\left(y-z\right)-z\left(y-z\right)\right)=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

27 tháng 10 2018

\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)

19 tháng 5 2021

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

19 tháng 5 2021

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)