K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

\(x\left(a^2+a-3a-3\right)+a^2-9=0\)0

\(\Leftrightarrow\left(a-3\right)\left(ax+x+a+3\right)=0\)

nếu \(a=3\)thì phương trình nghiệm đúng với mọi x

nếu \(a\ne3\)thì phương trình có nghiệm a+1

29 tháng 4 2020

a) với a = -2 ta được phương trình:

3.[(-2) - 2].x + 2.(-2).(x - 1) = 4.(-2) + 3

<=> 3.(-4x) - 4.(x - 1) = (-8) + 3

<=> -12x - 4(x - 1) = -5

<=> -12x - 4x + 4 = -5

<=> -16x + 4 = -5

<=> -16x = -5 - 4

<=> -16x = -9

<=> x = 9/16

b) để x = 1, ta có:

3.(a - 2).1 + 2a(1 - 1) = 4a + 3

<=> 3(a - 2) + 0 = 4a + 3

<=> 3a - 6 = 4a + 3

<=> 3a - 6 - 4a = 3

<=> -a - 6 = 3

<=> -a = 3 + 6

<=> a = -9

8 tháng 2 2017

PT : \(x+\frac{2a\left(x+a\right)}{x}=\frac{a^2}{x}.\)

Phương trình đã cho tương đương với \(x^2+2a\left|x+a\right|-a^2=0\) với \(x\ne0\)

\(\left|x+a\right|=\left\{\begin{matrix}x+a\left(x\ge-a\right)\\-\left(x+a\right)\left(x< -a\right)\end{matrix}\right.\)

TH1 : Với \(x< -a\) : \(x^2-2a\left(x+a\right)-a^2=0\) với \(x\ne0\).

\(\Leftrightarrow x^2-2ax-3a^2=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-3a\right)=0\) với \(x\ne0.\)

\(x=3a< -a\Leftrightarrow x=3a\) với \(a< 0.\)

TH 2 : Với \(x\ge-a\) : \(x^2+2a\left(x+a\right)-a^2=0\) với \(x\ne0\)

\(\Leftrightarrow x^2+2ax+a^2=0\)

\(\Leftrightarrow\left(x+a\right)^2=0\Leftrightarrow x=-a\)

Vậy ..............

13 tháng 3 2018

I do not know what to do.

20 tháng 1 2017

2a^4=(1-a)^2=a^2-2a+1

\(A=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{\sqrt{2}!\left(a-2\right)!+2a^2}\)a> 2 không thể là nghiệm=> a<2

\(A=\frac{2a-3}{\sqrt{2}\left(2-a\right)+2a^2}=\frac{2a-3}{2a^2-\sqrt{2}a+2\sqrt{2}}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a-1+3\right)}\)

\(A=\frac{2a-3}{\sqrt{2}\left(3\right)}\)

20 tháng 1 2017

bạn giải thích rõ hơn được không ?

Ta có : \(ax^2+3\left(a+1\right)x+2a+4=0\left(a=a;b=3a+3;c=2a+4\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-3a-3}{a};x_1x_1=\frac{2a+4}{a}\)

Theo bài ra ta có : \(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\) Thay vào ta đc : 

\(\Leftrightarrow\left(\frac{-3a-3}{a}\right)^2-2\left(\frac{2a+4}{a}\right)=4\)

\(\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a+8}{a}=4\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a^2+8a}{a^2}=\frac{4a^2}{a^2}\)

Khử mẫu ta đc : \(9\left(a+1\right)^2-4a^2+8a=4a^2\)

\(\Leftrightarrow9\left(a^2+2a+1\right)-4a^2+8a=4a^2\)

\(\Leftrightarrow9a^2+18a+9-4a^2+8a-4a^2=0\)

\(\Leftrightarrow a^2+27a+9=0\)Ta có : \(\Delta=27^2-4.9=729-36=613>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-27-\sqrt{613}}{2};x_2=\frac{-27+\sqrt{613}}{2}\)