K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

mình đánh nhầm B=\(\frac{\sqrt{x}}{\sqrt{x}-3}\)

2 tháng 6 2021

Với \(x>0;x\ne9\)

Ta có : \(P=A.B\Rightarrow P=\frac{\sqrt{x}-1}{2\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{\sqrt{x}-1}{2\sqrt{x}-6}\)

Để biểu thức trên nhận giá trị nguyên khi 

\(\sqrt{x}-1⋮2\sqrt{x}-6\Leftrightarrow2\sqrt{x}-2⋮2\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}-6+4⋮2\sqrt{x}-6\Leftrightarrow4⋮2\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}-6\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(2\sqrt{x}-6\)1-12-24-4
\(2\sqrt{x}\)7584102
\(\sqrt{x}\)7/2 ( loại )5/2 ( loại )4251
xloạiloại2\(\sqrt{2}\)( loại )\(\sqrt{5}\)( loại )1

Vậy x = 1 ; 2 thì biểu thức trên nhận giá trị nguyên 

14 tháng 5 2021

Em gửi ảnh ạ !

14 tháng 5 2021

Em gửi ảnh trên ạ !!!!!

8 tháng 8 2019

ai giúp mình với ạ ngaingung

14 tháng 5 2021

1) Khi x = 49 thì:

\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)

2) Ta có:

\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)

\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)

Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)

Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)

Vậy x = 4

23 tháng 5 2021

\(\frac{4+\sqrt{X}}{7}\)

1) Thay x=16 vào A ta có:

A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)

A=\(\frac{16+4+1}{4+2}\)

A=\(\frac{21}{6}=\frac{7}{2}\)

11 tháng 3 2020

\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)

\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)

\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)