Tìm n để C nguyên:
\(C=\frac{n^4-16}{n^4-4n^3+8n^2+16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
ta có: \(A=\frac{8n-1}{4n+2}=\frac{2\left(4n+2\right)-5}{4n+2}\)
để \(A\in Z\Leftrightarrow-5⋮\left(4n+2\right)\)
\(\Leftrightarrow4n+2\inƯ\left(-5\right)\)
\(\Leftrightarrow4n+2\in\left(\pm1;\pm5\right)\)
\(\Leftrightarrow4n\in\left(-3;-1;-7;3\right)\)
\(\Leftrightarrow n \in\left(\frac{-3}{4};\frac{-1}{4};\frac{-7}{4};\frac{3}{4}\right)\)
Ta có:\(8n-1⋮4n+2\)
\(\Rightarrow8n-1+5-5⋮4n+2\)
\(\Rightarrow8n+4-5⋮4n+2\)
\(\Rightarrow2\left(4n+2\right)-5⋮4n+2\)
\(\Rightarrow-5⋮4n+2\)
\(\Rightarrow4n+2\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
Vì \(4n+2\)là số chẵn
\(\Rightarrow n\)là số chẵn
Vậy \(n\in\varnothing\)