Cho các số dương a,b,c thỏa mãn: \(\left(3a+2b\right)\left(3a+2c\right)=16bc\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a}{b+c}+\frac{b+c}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3a+2b\right)\left(3a+2c\right)=16bc\Leftrightarrow\dfrac{3a+2b}{b}.\dfrac{3a+2c}{c}=16\Leftrightarrow\left(3x+2\right)\left(3y+2\right)=16\) với \(x=\dfrac{a}{b};y=\dfrac{a}{c}\).
Áp dụng bất đẳng thức AM - GM: \(16=\left(3x+2\right)\left(3y+2\right)\le\dfrac{\left(3x+3y+4\right)^2}{4}\Leftrightarrow x+y\le\dfrac{4}{3}\);
\(xy\le\dfrac{\left(x+y\right)^2}{4}\le\dfrac{4}{9}\).
Ta có: \(P=\dfrac{a^2+2a\left(b+c\right)+\left(b+c\right)^2}{a\left(b+c\right)}=\dfrac{a}{b+c}+\dfrac{b+c}{a}+2=\dfrac{xy}{x+y}+\dfrac{x+y}{xy}=\left(\dfrac{xy}{x+y}+\dfrac{x+y}{9xy}\right)+\dfrac{8\left(x+y\right)}{9xy}\ge2\sqrt{\dfrac{xy}{x+y}.\dfrac{x+y}{9xy}}+\dfrac{8\left(x+y\right)}{\dfrac{9\left(x+y\right)^2}{4}}=\dfrac{2}{3}+\dfrac{32}{9\left(x+y\right)}\ge\dfrac{2}{3}+\dfrac{32}{12}=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).
Đẳng thức xảy ra khi \(3a=2b=2c>0\).
Vậy...
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)
Do đó: \(\frac{a+b-c}{c}=1\)\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b+c=3c\) (1)
\(\frac{b+c-a}{a}=1\)\(\Rightarrow b+c-a=a\)\(\Rightarrow b+c+a=3a\) (2)
\(\frac{a+c-b}{b}=1\)\(\Rightarrow a+c-b=b\)\(\Rightarrow a+c+b=3b\) (3)
Từ (1), (2), (3) \(\Rightarrow3a=3b=3c\)\(\Rightarrow a=b=c\)
Ta có: \(T=\left(10+\frac{b}{a}\right)\left(4+\frac{2c}{b}\right)\left(2017+\frac{3a}{c}\right)\)
\(=\left(10+\frac{a}{a}\right)\left(4+\frac{2c}{c}\right)\left(2017+\frac{3a}{a}\right)\)
\(=\left(10+1\right)\left(4+2\right)\left(2017+3\right)\)
\(=11.6.2020=133320\)
p/s: làm thế này đúng không ta, mình hong chắc lắm
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3
\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)
\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)
Áp dụng BĐT Cosi ta có:
\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)
Từ (1)(2)(3) ta có:
\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)
Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)
Dấu "=" xảy ra <=> a=b=c=1
\(P=\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)
\(=\frac{3a+3b+2c}{\sqrt{6\left(a^2+ab+bc+ca\right)}+\sqrt{6\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)(Do ab + bc + ca = 5)
\(=\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng BĐT AM - GM, ta được:
\(\sqrt{6\left(a+b\right)\left(a+c\right)}=2\sqrt{\frac{6}{4}\left(a+b\right)\left(a+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(a+c\right)=\frac{5}{2}a+\frac{6}{4}b+c\)
\(\sqrt{6\left(b+a\right)\left(b+c\right)}=2\sqrt{\frac{6}{4}\left(b+a\right)\left(b+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(b+c\right)=\frac{6}{4}a+\frac{5}{2}b+c\)
\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}=c+\frac{a}{2}+\frac{b}{2}\)
Cộng theo vế của 3 BĐT trên, ta được: \(\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)\(\le\frac{9}{2}a+\frac{9}{2}b+3c\)
\(\Rightarrow\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)\(\ge\frac{3a+3b+2c}{\frac{9}{2}a+\frac{9}{2}b+3c}=\frac{2}{3}\)
Đẳng thức xảy ra khi \(a=b=1;c=2\)
lại nữa
Từ giả thiết , ta có : \(GT< =>\frac{\left(3a+2b\right)\left(3a+2c\right)}{bc}=\frac{16}{bc}\)
\(< =>\left(\frac{3a}{b}+\frac{2b}{b}\right)\left(\frac{3a}{c}+\frac{2c}{c}\right)=16\)
\(< =>\left(3\frac{a}{b}+2\right)\left(3\frac{a}{c}+2\right)=16\)
đến đây nhắn cho e cái điểm rơi để e nghĩ tiếp nhaaaaaaa