Cho x, y, z là 3 số thực thõa mãn điều kiện: x + y + z = 3 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
Chứng minh ít nhất 1 trong 3 số x, y, z bằng 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ x+y+z=3 ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
Nhân chéo ta có:
\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)
\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)
Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0
Với x+z=0 ta đc y=3
Với y+z=0 ta đc x=3
Với x+y=0 ta đc z=3
Từ đó suy ra đccm
Lời giải:
Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)
BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)
Áp dụng vào bài toán:
\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)
\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)
\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)
Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)
=> ...............................................
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) (do x+y+z = 2015)
\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
đến đây tự lm nốt nha
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\)\(x+y+z=\frac{xy+yz+xz}{xyz}\)
\(\Leftrightarrow\)\(x+y+z=xy+yz+xz\) (vì xyz = 1 )
Ta có: \(\left(xyz-1\right)+\left(x+y+z\right)-\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(\left(xyz-xy\right)-\left(xz-x\right)-\left(yz-y\right)+\left(z-1\right)=0\)
\(\Leftrightarrow\)\(xy\left(z-1\right)-x\left(z-1\right)-y\left(z-1\right)+\left(z-1\right)=0\)
\(\Leftrightarrow\)\(\left(z-1\right)\left(x-1\right)\left(y-1\right)=0\) (mk lm hơi tắt, thông cảm)
\(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\)
hoặc \(y-1=0\) \(\Leftrightarrow\) \(y=1\)
hoặc \(z-1=0\) \(\Leftrightarrow\) \(z=1\)
Vậy....
ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\) (x;y;z khác 0)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)
\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\) (vì x;y;z khác 0)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y=0 hoặc y+z=0 hoặc z+x=0
mà x+y+z=2006 nên
z=2006 hoặc x=2006 hoặc y=2006
=> đpcm
1/x + 1/y + 1/z = 1/3 = 1/x+y+z
<=> xy+yz+zx/xyz = 1/x+y+z
<=> (xy+yz+zx).(x+y+z) = xyz
<=> x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz = xyz
<=> x^2y+xy^2+y^2z+zy^2+z^2x+zx^2+2xyz = 0
<=> (x+y).(y+z).(z+x) = 0
<=> x+y=0 hoặc y+z=0 hoặc z+x = 0
<=> z=3 hoặc x=3 hoặc y=3
=> ĐPCM
Tk mk nha