K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

để ảnh đại diện chất đấy

13 tháng 6 2020

Chẳng hiểu gì sất!

21 tháng 2 2018

Ta có:   \(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

            \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c}\)

             \(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng 3 BĐT trên vế theo vế ta được:

          \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ko thể là số nguyên dương.

       

21 tháng 2 2018

\(P=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+B}.\)

\(P>\frac{\left(a+b+c\right)}{\left(a+b+c\right)}=1\)

suy ra P là số nguyên dương

M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0

M=1+b+1+c+1+a=3+a,b,c

M là số nguyên

16 tháng 2 2016

Ta có a/b+c+b/a+c+c/a+b > a/a+b+c+b/b+c+a+c/b+c+a=a+b+c/a+b+c=1

=>M>1

Lại có M=(1-b/a+b)+(1- c/b+c)+(1-c/a+c)<3-(b/a+b+c+c/b+c+a+a/c+a+b)=3-1=2

=>M < 2

 do đo 1<M<2=>đpcm

8 tháng 8 2016

Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

                                               \(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

                                               \(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên dương

12 tháng 5 2016

M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0

M=1+b+1+c+1+a=3+a,b,c

M là số nguyên

12 tháng 5 2016

M là số nguyên

18 tháng 2 2017

Chứng minh là sai đề đấy

21 tháng 2 2017

Phải là tìm a,b,c mới đúng 

20 tháng 3 2022

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

21 tháng 2 2020

Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)=> \(M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=> M > 1 (1)

Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{a+b}{a+b+c}\\\frac{c}{a+c}< \frac{b+c}{a+b+c}\end{cases}\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2}\)

=> M < 2 (2)

Từ (1) và (2) => 1 < M < 2 => M không phải là số chính phương

21 tháng 2 2020

Xin lỗi bạn Lê Thê Hiếu nha 

Kết luật phải là M không phải là số nguyên