K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

Giả sử c không phải là cạnh nhỏ nhất,chẳng hạn \(a\le c\).

Khi đó:\(a^2\le c^2\)và \(b^2\le\left(a+c\right)^2\le4c^2\)

\(\Rightarrow a^2+b^2< 5c^2\)(trái với giả thiết)

\(\Rightarrow\)điều giả sử sai

\(\Rightarrow\)điều ngược lại đúng,tức là c  là độ dài cạnh nhỏ nhất của tam giác.

9 tháng 2 2019

cảm ơn nhe bn

4 tháng 2 2020

Giả sử c không là độ dài cạnh nhỏ nhất, không mất tính tổng quát, giả sử : \(c\ge a\)

\(\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)

\(\Rightarrow b^2>4c^2=\left(2c\right)^2\)(1)

Vì b và c là số dương (độ dài các cạnh) nên \(\left(1\right)\Leftrightarrow b>2c\ge c+a\)(trái với bđt tam giác)

Vậy điều giả sử là sai nên c là độ dài cạnh nhỏ nhất (đpcm)

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.4. Chứng minh rằng :...
Đọc tiếp

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.

2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.

3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.

4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.

5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai

a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4 

6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ

7. Cho các số a, b, c thỏa mãn các điều kiện: 

{ a+ b+ c> 0             (1)

{ ab + bc + ca > 0    (2)       

{ abc > 0                    ( 3)

CMR : cả ba số a, b, c đều dương

8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".

9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.

2
11 tháng 7 2018

Này là toán lớp 7

11 tháng 7 2018

Lớp 10 đấy

2 tháng 2 2016

a+b+c => a+b= -c

=> (a+b)= (-c)2

=> a3+b3+3ab(a+b) = -c2

=> a3+b3+c3 = -3ab(a+b)

=> a2+b2+c= -3ab(-c) = 3abc

5 tháng 6 2016

Ta có :

( b + c - a ) ( b + a - c ) = b2 - ( c - a )2 < b2

( c + a - b ) ( c + b  - a ) = c2 - ( a - b ) < c2

( a + b - c ) ( a + c - b ) = a2 - ( b - c )2 < a2

Nhân từng vế ba bất đẳng thức trên ta được

[ ( b + c - a ) ( a + c - b ) ( a + b - c ) ]2  <  [ abc ]2

Các biểu thức trong dấu ngoặc vuông đều dương nên 

( b + c - a ) ( a + c - b ) ( a + b - c ) < abc

Xảy ra đẳng thức khi và chỉ khi a = b =c