chứng minh rằng :Nếu độ dài các cạnh của tam giác liên hệ với nhau bất đẳng thức a^2+b^2<5c^2 thì c là độ dài cạnh nhỏ nhất của tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử c không là độ dài cạnh nhỏ nhất, không mất tính tổng quát, giả sử : \(c\ge a\)
\(\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)
\(\Rightarrow b^2>4c^2=\left(2c\right)^2\)(1)
Vì b và c là số dương (độ dài các cạnh) nên \(\left(1\right)\Leftrightarrow b>2c\ge c+a\)(trái với bđt tam giác)
Vậy điều giả sử là sai nên c là độ dài cạnh nhỏ nhất (đpcm)
a+b+c => a+b= -c
=> (a+b)2 = (-c)2
=> a3+b3+3ab(a+b) = -c2
=> a3+b3+c3 = -3ab(a+b)
=> a2+b2+c2 = -3ab(-c) = 3abc
Ta có :
( b + c - a ) ( b + a - c ) = b2 - ( c - a )2 < b2
( c + a - b ) ( c + b - a ) = c2 - ( a - b ) 2 < c2
( a + b - c ) ( a + c - b ) = a2 - ( b - c )2 < a2
Nhân từng vế ba bất đẳng thức trên ta được
[ ( b + c - a ) ( a + c - b ) ( a + b - c ) ]2 < [ abc ]2
Các biểu thức trong dấu ngoặc vuông đều dương nên
( b + c - a ) ( a + c - b ) ( a + b - c ) < abc
Xảy ra đẳng thức khi và chỉ khi a = b =c
Giả sử c không phải là cạnh nhỏ nhất,chẳng hạn \(a\le c\).
Khi đó:\(a^2\le c^2\)và \(b^2\le\left(a+c\right)^2\le4c^2\)
\(\Rightarrow a^2+b^2< 5c^2\)(trái với giả thiết)
\(\Rightarrow\)điều giả sử sai
\(\Rightarrow\)điều ngược lại đúng,tức là c là độ dài cạnh nhỏ nhất của tam giác.
cảm ơn nhe bn