K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

Với n=3k ta có 3k(3k+1)(3k+5) chia hết cho 3

Với n=3k+1 ta có (3k+1)(3k+2)(3k+6)=3(3k+1)(3k+2)(k+2) chia hết cho 3

Với n=3k+2 ta có (3k+2)(3k+3)(3k+7)=3(3k+2)(k+1)(3k+7) chia hết cho 3. Từ đó ta có đpcm

22 tháng 7 2015

- Nếu n chia hết cho 3 \(\Rightarrow\) n = 3k (k \(\in\) N) thì \(n\left(n+1\right)\left(n+5\right)=3k\left(3k+1\right)\left(3k+5\right)\) chia hết cho 3. (do 3k chia hết cho 3)

- Nếu n chia 3 dư 1 \(\Rightarrow\) n = 3k + 1 thì \(n\left(n+1\right)\left(n+5\right)=\left(3k+1\right)\left(3k+2\right)\left(3k+6\right)\)chia hết cho 3. (do 3k + 6 chia hết cho 3)

- Nếu n chia 3 dư 2 \(\Rightarrow\) n = 3k + 2 thì \(n\left(n+1\right)\left(n+5\right)=3k.\left(3k+3\right).\left(3k+7\right)\) chia hết cho 3. (do 3k + 3 chia hết cho 3)

=> điều phải chứng minh.

18 tháng 7 2016

đặt A=n(n+1)(n+5)

-nếu n chia hết cho 3=>A chia hết cho 3

-nếu có dạng 3k+1(k là STN)

=>n+5=3k+1+5=3(2k+3) chia hết cho 3

=>A chia hết cho 3

-nếu n có dạng 3k+2

=>n+1=3k+3=3(k+1) chia hết cho 3

=>A chia hết cho 3

18 tháng 7 2016

Do n là số tự nhiên nên n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)

+ Với n = 3k thì n chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3

+ Với n = 3k + 1 thì n + 5 = 3k + 6 = 3.(k + 2) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3

+ Với n = 3k + 2 thì n + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3

Chứng tỏ tích n.(n + 1).(n + 5) là 1 số chia hết cho 3 với mọi số tự nhiên n

17 tháng 7 2015

1a)

U(15) = {-15; -5; -3; -1; 1; 3; 5; 15}

=> n + 1 \(\in\) {-15; -5; -3; -1; 1; 3; 5; 15}

=> n \(\in\) {-16; -6; -4; -2; 0; 2; 4; 14}

(Chú ý nếu chưa học số âm thì bỏ các số âm đi nhé)

1b) 12 / (n+5) là số tự nhiên thì n + 1 \(\in\) Ư(12)

Ư(12) = {1 ; 2; 3; 4; 6; 12}

=> n + 5 \(\in\)  {1 ; 2; 3; 4; 6; 12}

=> n \(\in\) { 6 - 5; 12 - 5}

    n \(\in\) { 1; 7}

2) (n + 3)(n + 6) xét 2 trường hợp của n

n chẵn => n + 6 chẵn => tích trên là số chẵn và chia hết cho 2

n lẻ => n + 3 chẵn => tích trên cũng là số chẵn và chia hết cho 2

Vậy trong mọi trường hợp tích trên đều là số chẵn và chia hết cho 2

24 tháng 7 2015

1)

a)

=10...0+5

=10..05 chia hết cho 5

=1+0+5=6 chia hết cho3

b)10...0+44

=10...04 chia hết cho 2

=1+0+0+4+4=9 chia hết cho 9

 

23 tháng 12 2017

n là stn => n= 3k hoặc n=3k + 1 hoặc n= 3k + 2                         (k thuộc N)

với n=3k

​ ta có : 3k ( 3k + 1) (3k +5)

3k chia hết 3 => 3k ( 3k + 1) ( 3k + 5) chia hết cho 3

hay: n(n+1)(n+5) chia hết cho 3

với n=3k+1

ta có : (3k+1)(3k+1+1)(3k+1+5)

         =(3k+1)(3k+2)(3k+6)

         =3(3k+1)(3k+2)(k+2) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

với n= 3k+ 2

ta có : (3k+2)(3k+2+1)(3k+2+5)

         =(3k+2)(3k+3)(3k+7)

         =3(3k+2)(k+1)(3k+7) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

Vậy với mọi stn n thì n(n+1)(n+5) chia hết cho 3

30 tháng 7 2017

1. Ta có dãy chia hết cho 2 : 2,4,6,...,100

Có số ' số chia hết cho 2 là :

(100-2):2+1=50 số

Ta có dãy chia hết cho 5 : 5,10,15,...,100

Có số ' số chia hết cho 5 là :

(100-5):5+1=20 số

2.

- n là số lẻ nên suy ra n+7 là chẵn

=> (n+4)(n+7) là số chẵn

- n là số chẵn suy ra n+4 là chẵn

=> (n+4)(n+7) là số chẵn

Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .

=> đpcm

24 tháng 10 2017

Xét 2 trường hợp:

* Nếu n là số lẻ thì:

n + 3 là số chẵn

n + 6 là số lẻ

suy ra (n+3)(n+6) là số chẵn và chia hết cho 2

* Nếu n là số chẵn thì:

n + 3 là số lẻ

n + 6 là số chẵn

suy ra (n+3)(n+6) là số chẵn và chia hết cho 2

Vậy với mọi ...........

Nhớ k cho mình nhé! Thank you!!!

29 tháng 9 2016

Xét 2 trường hợp:

+)Trường hợp 1: n chẵn

Với n là số chẵn ta luôn có n(n+5) chia hết cho 2 (1)

+)Trường hợp 2: n lẻ

Với n lẻ thì n+5 là chẵn => n(n+5) chia hết cho 2 (2)

Từ (1) và (2) => n(n+5) chia hết cho 2 với mọi n là số tự nhiên

9 tháng 10 2016

Chung ming (n+1)(n+8) chia het cho 2 voi moi so tu nhien n

13 tháng 6 2017

Ta có: 4 là 1 số tự nhiên chẵn

7 là 1 số tự nhiên lẻ

n có thể là 1 số tự nhiên chẵn hoặc lẻ

Nhưng,khi n cộng với 1 số tự nhiên chẵn (4) và n lại cộng với 1 số tự nhiên lẻ (7)thì kết quả chẵn lẻ khác nhau(vì n là 1 số cố định,cộng với số chẵn và số lẻ thì 2 kết quả này luôn trái ngược chẵn lẻ)

=>Nếu n+4 chẵn thì n+7 lẻ(trong trường hợn này n chẵn)

=>nếu n+4 lẻ thì n+7 chẵn(trong trường hợp này n lẻ)

chẵn.lẻ=chẵn(đpcm)

13 tháng 6 2017

Vì n là một số tự nhiên nên ta có 2 trường hợp:

Trường hợp 1: Nếu n là số chẵn thì n+4 là một số chẵn nên tích (n+4) * (n+7) là số chẵn.

Trường hợp 2: Nếu n là số lẻ thì n+7 là một số chẵn nên tích (n+4) * (n+7) là số chẵn.

Từ 2 trường hợp trên ==> Tích (n+4) * (n+7) luôn là số chẵn.

10 tháng 11 2016

Nếu n là số lẻ thì ( n+5 ) là số chẵn . Vậy ( n+ 2 ) * ( n+5 ) là số chẵn

Nếu n là số chẵn thì ( n+ 2) là số chẵn . Vậy ( n+ 2 ) * ( n + 5 ) là số chẵn

Vậy với mọi số tự nhiên n thì tích ( n+2 ) * ( n+5 ) là số chẵn

Duyệt đi , chúc bạn học giỏi

10 tháng 11 2016

(n+2).(n+5)

2 là số chẵn và 5 là số lè thì n là chẵn hay lẻ thì cũng có 1 vế là chẵn

nếu 1 vế là chẵn thì cả phép tính sẽ có kết là số chẵn

4 tháng 1 2017

Với n là số tự nhiên lẻ thì: n+2 lẻ, n+5 chẵn

=>(n+2)(n+5) chẵn

Với n là số tự nhiên chẵn thì: n+2 chẵn, n+5 lẻ

=>(n+2)(n+5) chẵn

22 tháng 4 2018

TH1:

voi n la số chan thi n+4 la so chan

va n+7 la so le

ma so chan nhan vs so le la so chan

=>(n+2).(n+5) la so chan

TH2:

Với n la so le thì n+2 la so le

va n+5 la so chan

ma so lenhan vs so chan la so chan

=>(n+2).(n+5) la so chan