Tìm x thuộc Z biết
a)(x+5).(x-4)>0
b)(x-3).(x+7)<0
c)(x+3).(x2+1)>0
d)(x2-4).(x2-16)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a) Ta có: \(36x^3-4x=0\)
\(\Leftrightarrow4x\left(9x^2-1\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)
b) Ta có: \(3x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
a: Ta có: \(2x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b: Ta có: \(x^2\left(x-6\right)-x^2+36=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=3\\x=-2\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
a/ \(x^2-25=0\)
\(\Rightarrow\left(x+5\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\Rightarrow x=-5\\x-5=0\Rightarrow x=5\end{matrix}\right.\)
b/ \(x\left(x+7\right)+x+7=0\)
\(x\left(x+7\right)+\left(x+7\right)=0\)
\(\left(x+7\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+7=0\Rightarrow x=-7\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2