tìm các số a,b thuộc Z biết rằng
-3 lớn hơn hoặc bằng giá trị tuyêt đối của a + 1 + giá trị tuyêt đối của b-2 bé hơn hoặc bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) |x - (-2)| = -1
=> |x + 2| = -1
=> \(\orbr{\begin{cases}x+2=1\\x+2=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=1-2\\x=-1-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c) 5 - |x + 1| = 20
=> |x + 1| = 5 - 20
=> |x + 1| = -15
=> x không có số nào thỏa mãn
d) (-1) + 3 + (-5) + 7 + ... + x = 600
=> [(-1) + 3] + [(-5) + 7] + ... + [x + (x - 2)] = 600
=> 2 + 2 + 2 + ... + 2 = 600
=> (x - 1) : 2 + 1 = 600
=> (x - 1) : 2 = 600 - 1
=> (x - 1) : 2 = 599
=> x - 1 = 599 . 2
=> x - 1 = 1198
=> x = 1198 + 1
=> x = 1199
e) 9 \(\le\)|x - 3| < 11
=> |x - 3| \(\in\){9;10}
|x - 3| = 9
\(=>\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}}=>\orbr{\begin{cases}x=9+3\\x=-9+3\end{cases}}=>\orbr{\begin{cases}x=12\\x=-6\end{cases}}\)
|x - 3| = 10
\(=>\orbr{\begin{cases}x-3=10\\x-3=-10\end{cases}}=>\orbr{\begin{cases}x=10+3\\x=-10+3\end{cases}}=>\orbr{\begin{cases}x=13\\x=-7\end{cases}}\)
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
x thuộc {-3; 3; -2; 2; -1; 1}
y thuộc {-5; 5; -4; 4; -3; 3}
Theo đề bài, ta có:
-3\(\ge\)|a+1|+|b-2|
1\(\ge\)|a+1|+|b-2|
Do|a+1|\(\ge\)0
|b-2| \(\ge\)0
=>|a+1|+|b-2|\(\ge\)0
=> |a+1|+|b-2|=0 hoặc |a+1|+|b-2|=1
Xét |a+1|+|b-2| = 0:
Vì |a+1|\(\ge\)0,|b-2|\(\ge\)0
Mà|a+1|+|b-2|=0
=> |a+1|=0 và |b-2|=0
=> a = -1 và b = 2
Xét |a+1|+|b-2|=1:
Vì|a+1|+|b-2|=1
nên |a+1|=0 thì |b-2|=1 và nếu |a+1|=1 thì |b-2|=0
|a+1|=0 và|b-2|=1
Vậy ta có các cặp a;b tương ứng:(a,b)\(\in\){(-1;2);(-1;3);(0;2)}
Theo đề bài, ta có:
-3≥|a+1|+|b-2|
1≥|a+1|+|b-2|
Do|a+1|≥0
|b-2| ≥0
=>|a+1|+|b-2|≥0
=> |a+1|+|b-2|=0 hoặc |a+1|+|b-2|=1
Xét |a+1|+|b-2| = 0:
Vì |a+1|≥0,|b-2|≥0
Mà|a+1|+|b-2|=0
=> |a+1|=0 và |b-2|=0
=> a = -1 và b = 2
Xét |a+1|+|b-2|=1:
Vì|a+1|+|b-2|=1
nên |a+1|=0 thì |b-2|=1 và nếu |a+1|=1 thì |b-2|=0
|a+1|=0 và|b-2|=1
Vậy ta có các cặp a;b tương ứng:(a,b)∈{(-1;2);(-1;3);(0;2)}