tìm số nguyên m và n sao cho:
3*m*n-3*m+n+2=0
chú ý m và n có nhiều giái trị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để M là số nguyên thì 2 chia hết cho n-1
n-1 thuộc Ư(2)
n-1=1
=>n=2
n-1=-1
=>n=0
n-1=-2
=>n=-1
n-1=2
=>n=3
vậy n thuộc{2;0;-1;3}
Để M là giá trị nguyên thì n - 1 là ước nguyên của 2
U(2) là { 1; 2; -1; -2 }
\(n-1=1\Rightarrow n=2.\)
\(n-1=-1\Rightarrow n=0.\)
\(n-1=2\Rightarrow n=3\)
\(n-1=-2\Rightarrow n=-1\)
mink nghĩ vậy bạn ạ
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
ta có
\(\frac{3}{m}-\frac{n}{2}=\frac{3}{4}\Leftrightarrow\frac{6-mn}{2m}=\frac{3}{4}\Leftrightarrow24-4mn=6m\)
\(\Leftrightarrow4nm+6m=24\Leftrightarrow2m\left(2n+3\right)=24\)
Do 2n+3 là số lẻ và là ước của 24 nên
\(2n+3\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{-3,-2,-1,0\right\}\)
tương ứng với n ta có \(m\in\left\{-4,-12,12,4\right\}\)
\(M=\frac{6}{n-3}\)
a) Để M không là phân số
\(\Rightarrow n-3=0\)
\(\Rightarrow n=3\)
b) Để M là phân số và có giá trị nguyên
\(\Rightarrow n\ne3\)và \(6⋮n-3\)
\(6⋮n-3\)
\(n-3\in\left\{\pm6;\pm3;\pm2;\pm1\right\}\)
\(\Rightarrow n\in\left\{9;6;5;4;2;1;0;-3\right\}\)
a)Để \(M=\frac{-6}{n-3}\)không phải là p/s thì n-3 = 0 => n=3
Vậy nếu n=3 thì \(M=\frac{-6}{n-3}\)không phải là phân số.
b) Để \(M=\frac{-6}{n-3}\)là phân số thì \(n\ne3\), \(n\in Z\)và \(-6⋮n-3\)
\(-6⋮n-3\Leftrightarrow n-3\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Lập bảng
n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 4 | 3 | 5 | 1 | 6 | 0 | 9 | -3 |
Vậy nếu \(n\in\left\{0;1;\pm3;4;5;6;9\right\}\),\(n\in Z\)Và \(n\ne3\)thì \(M=\frac{-6}{n-3}\)là phân số và có gtrị nguyên
Bài nào đấy Long