Tìm số nguyện x để A có gái trị là 1 số nguyên biết: A = \(\frac{\sqrt{x+1}}{\sqrt{x-3}}\) \(\left(x\ge0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số nguyên x để A có giá trị là 1 số nguyên \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0\right)\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E Z
<=>4 chia hết cho \(\sqrt{x}-3\)
<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}
+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại vì \(\sqrt{x}\) >= 0)
+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)
+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)
+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)
+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)
+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)
Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)
Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z
\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
\(x\) | 16 | 4 | 25 | 1 | 49 | loại |
Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z
a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(\sqrt{x}\ge0\forall x\)
\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1-2y}{8}\)
=> 5.8 = x(1 - 2y)
=> x(1 - 2y) = 40
=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}
Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}
Lập bảng :
1 - 2y | 1 | -1 | 5 | -5 |
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy ....
\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).
Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên
Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)
\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)
Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!
\(a,A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\\ b,A< 0\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(1>0\right)\\ \Leftrightarrow x< 1\\ c,A\in Z\Leftrightarrow1⋮\sqrt{x}-1\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(1\right)\left\{-1;1\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\)
a) \(A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\)
b) \(A=\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp đk:
\(\Rightarrow0\le x< 1\)
c) \(A=\dfrac{1}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0;2\right\}\)
\(\Rightarrow x\in\left\{0;4\right\}\)
Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)
Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)
do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)
Đến đây xét từng TH là ra
rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)
=\(1+\frac{5}{\sqrt{x}+1}\)
Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)
Đến đây thì ez rồi
\(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
Để A là số nguyên thì \(\sqrt{x}+1=1\)
hay x=0
Lời giải:
\(A=\frac{\sqrt{x}+1+\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\frac{2(\sqrt{x}+1)-1}{\sqrt{x}+1}=2-\frac{1}{\sqrt{x}+1}\)
Để $A$ nguyên thì $\frac{1}{\sqrt{x}+1}$ nguyên.
Với $x$ nguyên thì điều này xảy ra khi mà $\sqrt{x}+1$ là ước của $1$
$\Rightarrow \sqrt{x}+1=1$ (do $\sqrt{x}+1$ dương)
$\Rightarrow x=0$