cho tam giác ABC cân tại A . Qua B vẽ đường thẳng vuông góc với AB , qua C vẽ đường thẳng vuông góc với AC , hai đường thẳng cắt nhau ở D . chứng minh : BD = CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
Nguồn: Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc vs AB, qua C kẻ đường thẳng vuông góc vsAC, 2 đường thẳng cắt nhau ở D, chứng minh: a, BD=CD B,Đường thẳng AD là dường trung trực của BC - Hoc24
Ta có:
Tam giác ABC cân tại A => góc ABC = góc ACB
Mà góc ABD = góc ACD (=90độ) => góc ABD - góc ABC = góc ACD - góc ACB <=> góc DBC = góc DCB
=> Tam giác DBC cân ở D => DB=DC
b. gỌI I là giao điểm của AD và BC
Ta có: tam giác ABD = tam giác ACD (c-c-c)
=> góc BAD = góc CAD <=> góc BAI = góc CAI
=> tam giác BAI = tam giác CAI (c-g-c) => BI=IC
=> AI là trung trực của BC
CMTT có: DI là trung trực BC
=> Đường thẳng AD là trung trực của BC
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
nên DB=DC
b: BE⊥AC
DC⊥AC
Do đó: BE//DC
c: \(\widehat{EBC}=\widehat{DCB}\)
mà \(\widehat{DCB}=\widehat{DBC}\)
nên \(\widehat{EBC}=\widehat{DBC}\)
hay BC là tia phân giác của góc EBD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD vuông góc BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
Xét tam giác ABD và tam giác ACD
có AD chung
góc ABD=góc ACD=90 độ
AB=AC ( Vì tam giác ABC cân tại A)
suy ra tam giác ABD =tam giác ACD (cạnh huyền-cạnh góc vuông)
suy ra BD=CD (hai cạnh tương ứng)