K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

Cách làm:

 - Để một phân số là số nguyên thì tử chia hết cho mẫu.

 - Liệt kê các ước của tử

 - Từ đó tìm x.

CHÚC BN GIẢI ĐÚNG!

P/s: Có cách làm rồi bn tự giải nha đừng chép nguyên bài giải của người khác( nếu đúng ).

9 tháng 3 2020

a) Để \(1:x\)là số nguyên 

\(\Rightarrow x\inƯ\left(1\right)\in\left\{\pm1\right\}\)

Vậy \(x\in\left\{-1,1\right\}\)

b) Để \(1:x-1\)là số nguyên

\(\Rightarrow x-1\inƯ\left(1\right)\in\left\{\pm1\right\}\)

+ Với \(x-1=-1\)\(\Rightarrow\)\(x=-1+1=0\left(TM\right)\)

+ Với \(x-1=1\)\(\Rightarrow\)\(x=1+1=2\left(TM\right)\)

Vậy \(x\in\left\{0,2\right\}\)

c) Để \(2:x\)là số nguyên

\(\Rightarrow x\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

Vậy \(x\in\left\{-1,-2,1,2\right\}\)

d) Để \(-3:x-2\)là số nguyên

\(\Rightarrow x-2\inƯ\left(-3\right)\in\left\{\pm1;\pm3\right\}\)

- Ta có bảng giá trị: 

\(x-2\)\(-1\)\(1\)    \(-3\)\(3\)   
\(x\)\(1\)\(3\)\(-1\)\(5\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-1,1,3,5\right\}\)

e) Ta có: \(x+8=\left(x+7\right)+1\)

- Để \(x+8⋮x+7\)\(\Rightarrow\)\(\left(x+7\right)+1⋮x+7\)mà \(x+7⋮x+7\)

\(\Rightarrow\)\(1⋮x+7\)\(\Rightarrow\)\(x+7\inƯ\left(1\right)\in\left\{\pm1\right\}\)

+ Với \(x+7=-1\)\(\Rightarrow\)\(x=-1-7=-8\left(TM\right)\)

+ Với \(x+7=1\)\(\Rightarrow\)\(x=1-7=-6\left(TM\right)\)

Vậy \(x\in\left\{-8,-6\right\}\)

a,để 1 chia x là số nguyên và x∈Z thì x ∈Ư(1)⇒x∈{±1} vậy x =1 hoặc -1

b,

b, Ta có: 1⋮⋮x-1

⇒x-1∈Ư(1)={±1}

x-1=1⇒x=2

x-1=-1⇒x=0

Vậy x∈{2;0}

27 tháng 6 2020

A = \(6\)

27 tháng 6 2020

bạn có thể giải chi tiết giúp mình đc ko

\(a)\)

Để x là số nguyên

\(\Rightarrow\frac{2}{2a+1}\)là số nguyên

\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)

Ta có:

2a+1-2-112
a-3/2-101/2
So sánh điều điện aLoạiTMTMLoại

\(b)\)

Ta có:

\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên

\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)

\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)

\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)

\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)

\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)

a: Để 5/x+3 là số nguyên thì \(x+3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-2;-4;2;-8\right\}\)

b: Để \(\dfrac{x^2}{x+1}\) là số nguyên thì \(x^2-1+1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-2\right\}\)

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
2 tháng 2 2017

1. x + 2x = -36

=> 3x = -36

=> x = -36 : 3

=> x = -12

2. (2x + 3) \(⋮\)(x - 2)

=> (2x - 2) + 5 \(⋮\)(x - 2)

=> 2(x - 2) + 5 \(⋮\)(x - 2)

=> 5 \(⋮\)(x - 2)

=> x - 2 \(\in\)Ư(5) = {-5;-1;1;5}

=> x \(\in\){-3;1;3;7}

3. Khi đó a . (-b) = -132

4. -2(3x + 2) = 12 + 22 + 32

=> -2(3x + 2) = 1 + 4 + 9

=> -2(3x + 2) = 14

=> 3x + 2 = 14 : (-2)

=> 3x+ 2 = -7

=> 3x = -7 - 2

=> 3x = -9

=> x = -9 : 3

=> x = -3

2 tháng 2 2017

1/ \(x+2x=-36\)

\(\Rightarrow3x=-36\)

\(\Rightarrow x=-\frac{36}{3}\)

\(\Rightarrow x=-12\)

2/    \(\left(2x+3\right)⋮\left(x-2\right)\)

\(\Leftrightarrow\left(2x-4\right)+7⋮\left(x-2\right)\)

\(\Leftrightarrow2\left(x-2\right)+7⋮\left(x-2\right)\)

\(\Rightarrow7⋮\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)\inƯ\left(7\right)\)

\(\Rightarrow x\inƯ\left(7-2\right)\)

\(\Rightarrow x\inƯ\left(5\right)\)

\(\Rightarrow x\in\left\{-5,1,5\right\}\)

Vậy x nhỏ nhất để \(\left(2x-3\right)⋮\left(x-2\right)\) là -5

3/ Vì \(a\cdot b=32\)

\(\Rightarrow-a\cdot b=-\left(a\cdot b\right)=-32\)

4/ \(-2\left(3x+2\right)=1^2+2^2+3^2\)

\(\Leftrightarrow-6x-4=1+4+9\)

\(\Leftrightarrow-6x=14+4\)

\(\Leftrightarrow-6x=18\)

\(\Leftrightarrow x=\frac{18}{-6}\)

\(\Rightarrow x=3\)

7 tháng 3 2020

a) Để \(1:x\)là số nguyên

\(\Rightarrow\)\(x\inƯ\left(1\right)\in\left\{\pm1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

b) Để \(1:\left(x-1\right)\)là số nguyên

\(\Rightarrow\)\(x-1\inƯ\left(1\right)\in\left\{\pm1\right\}\)

\(x-1=-1\)\(\Leftrightarrow\)\(x=-1+1=0\left(TM\right)\)

\(x-1=1\)\(\Leftrightarrow\)\(x=1+1=2\left(TM\right)\)

Vậy \(x\in\left\{0;2\right\}\)

c) Để \(2:x\)là số nguyên 

\(\Rightarrow\)\(x\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

Vậy \(x\in\left\{-1;-2;1;2\right\}\)

d) Để \(-3:\left(x-2\right)\)là số nguyên 

\(\Rightarrow\)\(x-2\inƯ\left(-3\right)\in\left\{\pm1;\pm3\right\}\)

- Ta có bảng giá trị:

\(x-2\)\(-1\)\(1\)    \(-3\)\(3\)   
\(x\)\(1\)\(3\)\(-1\)\(5\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-1;1;3;5\right\}\)