Tìm các số a, b, c biết
a) (2a - 7)^2 + (b + 3)^4 + (5c + 6)^2 < 0
b)(a - 7)^2 + (3b + 2)^2 + (4c - 5)^6 < 0
c)(12a - 5)^2 - (8b + 1)^4 + (c+ 19)^6 < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0
Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0
\(\Rightarrow\)Không tìm được a,b,c
a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)
\(\left(b+3\right)^4\ge0\left(\forall b\right)\)
\(\left(5c-6\right)^2\ge0\left(\forall c\right)\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)
Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)
=> Vô lí
=> Phương trình vô nghiệm
b;c Tương tự
1) Thay b= 10; c = -9 vào biểu thức, ta có:
\(a+10-\left(-9\right)=18\)
\(a=18-10-9\)
\(a=-1\)
2) Thay b = -2; c= 4 vào biểu thức ta có:
\(2a-3.\left(-2\right)+4=0\)
\(2a+10=0\)
\(2a=-10\)
\(a=-5\)
3) Thay b = 6; c= -1 vào biểu thức ta có:
\(3a-6-2.\left(-1\right)=2\)
\(3a-4=2\)
\(3a=6\)
\(a=2\)
b) Thay b = -7; c= 5 vào biểu thức ta có:
\(12-a+\left(-7\right)+5.5=-1\)
\(12-a+18=-1\)
\(12-a=-19\)
\(a=-7\)
5) Thay b = -3; c= -7 vào biểu thức ta có:
\(1-2.\left(-3\right)+\left(-7\right)-3a=-9\)
\(-3a=-9\)
\(a=3\)
hok tốt!!
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2