Cho tam giác đều ABC. Trên tia đối của các tia AB, CA, BC lần lượt lấy M, N, P sao cho AM = CN = BP. Chứng minh rằng: tam giác MNP là tam giác đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
a) Dễ dàng tính được : góc sCAM = góc CMA = \(\frac{180^o-120^o}{2}=30^o\)
=> góc BAC + góc CAM = 60 độ + 30 độ = 90 độ
=> MA vuông góc với AP
b) Dễ dàng cm được : tam giác ANP = tam giác CNM = tam giác PBM (c.g.c)
=> MN = MP = NP => MN = NP = MP
c)
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
chung một trọng tâm là gì nhỉ? mình mới học có trực tâm thui