chứng minh 2 tia phân giác của 2 góc kề bù có số đo bằng 90 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{xOm}=\widehat{mOz}=\frac{\widehat{xOz}}{2}\) (vì Om là tia phân giác của xOz)
\(\widehat{zOn}=\widehat{nOy}=\frac{\widehat{yOz}}{2}\) (vì On là tia phân giác của yOz)
Có: \(\widehat{mOn}=\widehat{mOz}+\widehat{zOn}=\frac{\widehat{xOz}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}+\widehat{yOz}}{2}=\frac{180^o}{2}=90^o\)
=> Om _|_ On (đpcm)
mOz=12ˆxOzˆmOz=12^xOz^ (1)(1) ( vì Om là hai tia phân giác của xOzˆxOz^ )
zOnˆ=12zOyˆzOn^=12zOy^ (2)(2) ( vì On là hai tia phân giác của zOyˆzOy^ )
Từ (1)(1) và (2)(2) , ta có :
mOzˆ+zOnˆ=12.(xOzˆ+zOyˆ)mOz^+zOn^=12.(xOz^+zOy^) (3)(3)
Vì tia OzOz nằm giữa hai tia Om,OnOm,On và vì xOzˆxOz^ và zOyˆzOy^ kề bù (gt)(gt)
Nên từ (3)(3) ⇒mOnˆ=12.1800⇒mOn^=12.1800
Hay mOnˆ=900
gọi 2 góc kề bù lần lượt là 1 và 2
ta có 1/2 góc 1+1/2 góc 2=góc tạo bởi 2 tia phân giác của hai góc kề bù
hay 1/2.180=90(DPCM)
GIẢ SỬ GÓC :a + b = 180o=> \(\frac{a}{2}+\frac{b}{2}\)=\(\frac{a+b}{2}\)=\(\frac{180^0}{2}\)=900
Gọi hai góc kề bù đó là xOy và xOz.
Ta có \(xOy+yOz=180^0\) (kề bù)
Gọi Om và On lần lượt là hai tia phân giác của xOy và yOz.
Do đó \(yOm=\frac{1}{2}.xOy\) và \(yOn=\frac{1}{2}.yOz\)
Lại có \(yOm+yOn=\frac{1}{2}.xOy+\frac{1}{2}.yOz=\frac{1}{2}.\left(xOy+yOz\right)=\frac{1}{2}.180^0=90^0\)
Vậy 2 tia phân giác của 2 góc kề bù có số đo bằng 90o