K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

\(1)\hept{\begin{cases}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\left(1\right)\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\left(2\right)\end{cases}}\)

Từ (1) ta rút ra được : \(x=\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}\left(3\right)\)

Thay (3) vào phương trinh (2) ta được : 

\(\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}.\left(1-\sqrt{3}\right)+y\sqrt{5}=1\)

\(\Leftrightarrow\frac{1-\sqrt{3}+\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)y+5y}{\sqrt{5}}=1\)

\(\Leftrightarrow1-\sqrt{3}-2y+5y=\sqrt{5}\)

\(\Leftrightarrow3y=\sqrt{3}+\sqrt{5}-1\)

\(\Leftrightarrow y=\frac{\sqrt{3}+\sqrt{5}-1}{3}\)vào (3) ta được :

\(x=\frac{1}{\sqrt{5}}.\left[1+\left(1+\frac{1}{\sqrt{3}}\right).\frac{\sqrt{3}+\sqrt{5}-1}{3}\right]\)

\(x=\frac{\sqrt{3}+\sqrt{5}+1}{3}\)

Vậy hệ phương trình có nghiệm \(\left(\frac{\sqrt{3}+\sqrt{5}+1}{3};\frac{\sqrt{3}+\sqrt{5}-1}{3}\right)\)

17 tháng 4 2017

Nhận cả 2 về với cần 5 con PT kia thì nhắn với (1+căn 3) rồi công đại số sẽ khu y

29 tháng 11 2019

a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) :

\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)

Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)

29 tháng 11 2019

b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)

Lấy (2 ) -(1) thu được :

\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)

Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)

Vậy ......

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

14 tháng 3 2020

Phương trình thứ hai tương đương: \(5x^4-10x^3y+x^2-2xy=0\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)

Vì \(5x^2+1>0\)nên \(x\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2y\end{cases}}\)

Đến đây bạn tự giải tiếp

30 tháng 1 2020

\(ĐKXĐ:-1\le x\le2;-1\le y\le2\)

\(HPT\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\left(\sqrt{x+1}-\sqrt{y+1}\right)-\left(\sqrt{2-x}-\sqrt{2-y}\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\frac{x-y}{\sqrt{x+1}-\sqrt{y+1}}+\frac{x-y}{\sqrt{2-x}+\sqrt{2-y}}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\left(x-y\right)\left(\frac{1}{\sqrt{x+1}-\sqrt{y+1}}+\frac{1}{\sqrt{2-x}+\sqrt{2-y}}\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le2;-1\le y\le2\\x=y\\\sqrt{x+1}+\sqrt{2-x}=\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le2;-1\le y\le2\\x=y\\3+2\sqrt{\left(x+1\right)\left(2-x\right)}=3\left(3\right)\end{cases}}\)

Giải phương trình 3 ta được 2 nghiệm là -1 và 2

Vậy hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{2-x}+\sqrt{y-1}=\sqrt{3}\end{cases}}\)có 2 nghiệm là (-1;-1) và (2;2)

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

4 tháng 9 2016

545rfdff

dsd

4 tháng 9 2016

bai nao cung kho zay bn co bai nao de de thi minh lam duoc chu bai nay thi minh chiu thoi!

chuc bn hoc gioi nha!

14 tháng 4 2019

ĐKXĐ: \(x+5\ge0\Leftrightarrow x\ge-5\)

\(\hept{\begin{cases}2\sqrt{x+5}-3\left(x+y\right)=1\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{x+5}-3\left(x+y\right)=1\\9\sqrt{x+5}+3\left(x+y\right)=21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}11\sqrt{x+5}=22\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x+5}=2\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+5=4\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\3\sqrt{-1+5}+\left(-1+y\right)=7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=-1\\3.2-1+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\5+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy hệ phương trình có 1 nghiệm là (x;y) = (-1;2)

28 tháng 4 2020

1) 

\(\hept{\begin{cases}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-y\left(\sqrt{2}+\sqrt{3}\right)=\sqrt{2}+\sqrt{3}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)