cho tam giác ABC cân tại A. Trên đoạn BC lấy 2 đoạn bằng nhau BM và CN. Kẻ
ME vuông góc AB, NF vuông góc AC. 2 đường thẳng ME và NF cắt nhau tại S.
a) C/m BE=CF
b)C/m tam giác SMN cân
c) C/m EF song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔANC có
AB=AC
góc B=góc C
BM=CN
=>ΔAMB=ΔANC
b: Xét ΔAEM vuông tại E và ΔAFN vuông tại F có
AM=AN
góc EAM=góc FAN
=>ΔAEM=ΔAFN
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Bài 2:
a: Xét ΔABC có
N là trung điểm của BC
M là trung điểm của AB
Do đó: NM là đường trung bình
=>NM//AC
hay NM//EF
Ta có: ME⊥AC
NF⊥AC
Do đó: ME//NF
Xét tứ giác MEFN có
ME//FN
MN//FE
Do đó: MEFN là hình bình hành
Suy ra: ME=NF
b: Ta có: MEFN là hình bình hành
nên MN=EF
CM: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Xét t/giác MEB = t/giác NFC
có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)
BM = CN (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)
T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
\(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)
=> AH là tia p/giác của \(\widehat{A}\)
Mà AD cũng là tia p/giác của \(\widehat{A}\)
=> AH \(\equiv\) AD
=> A, D, H thẳng hàng
M: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
(vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
(vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> (2 góc t/ứng)
=> AD là tia p/giác của
c) Xét t/giác MEB = t/giác NFC
có: (gt)
BM = CN (gt)
(vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> (1)
T/giác ABC cân tại A
=> (2)
Từ (1) và (2) =>
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
(gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> (2 góc t/ứng)
=> AH là tia p/giác của
Mà AD cũng là tia p/giác của
=> AH AD
=> A, D, H thẳng hàng