K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)

\(37^{1321}>37^{1320}=\left(37^2\right)^{660}=1369^{660}\)

Vì \(1369^{660}>1331^{660}\)Nên \(11^{1979}< 37^{1321}\)

ta có 11^1979<11^1980=(11^3)^660=1331^660

mà 37^1320=(37^2)^660=1369^660

mà 1331^660>1369^660 vậy 11^1979<37^1320

P/s: ^ là mũ nhé

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:
$1990^{10}+1990^9=1990^9(1990+1)=1991.1990^9< 1991.1991^9=1991^{10}$

-----------------------

$10^{10}=(10^2)^5=100^5=(2.50)^5=2^5.50^5=32.50^5< 48.50^5$

------------------------

$11^{1979}< 11^{1980}=(11^3)^{660}=1331^{660}$
$37^{1320}=(37^2)^{660}=1369^{660}> 1331^{660}$

$\Rightarrow 11^{1979}< 37^{1320}$

b: 99^20=(99^2)^10=9801^10

=>99^20<9999^10

d: 10^10=100^5=4*50^5<48*50^5

e: 1990^10+1990^9

=1990^9(1990+1)

=1990^9*1991

1991^10=1991^9*1991

=>1991^10>1990^9*1991

=>1991^10>1990^10+1990^9

5 tháng 10 2023

Câu 1.9920999910

=(992)10=980110

Vậy 980110<999910 suy ra  9920<999910

Câu 2. 3500và 7300

 3500=(35)100=243100

7300=(73)100=343100

Vậy 243100<343100 => 3500<7300

18 tháng 9 2015

Bạn hãy tự tính, bài này dễ lắm !!!

28 tháng 10 2018

a, 202203=(101.2)203

=101203.2203

=101202.2202.202

b, 203202=(101,5.2)202

=101,5202.2202

còn lại dễ

b, 199010+19909=19909.1990+19909=19909.(1990+1)=19909.1991

199120=199119.1991

=>199010+19909<199120

c, 111979<111980=(113)660=1331660

371320=(372)660=1369660

=>111979<371320

f: 11^1979<11^1980=1331^660

37^1320=(37^2)^660=1369^660

1331<1369

=>1331^660<1369^660

=>11^1980<37^1320

=>11^1979<37^1320

g: 10^10=2^10*5^10

48*50^5=2^4*3*2^5*5^10=2^9*3*5^10

2^10<2^9*3

=>2^10*5^10<2^9*3*5^10

=>10^10<48*50^5

 

Bài 2: 

a: \(5^{2008}+5^{2007}+5^{2006}\)

\(=5^{2006}\left(5^2+5+1\right)=5^{2006}\cdot31⋮31\)

b: \(8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

3 tháng 7 2017

1; 111979 > 371320

2; 199010 + 19909 > 199110

21 tháng 2 2016

a) \(11^{1979}<11^{1980}=\left(11^3\right)^{660}=1331^{660}\)

\(37^{1320}=\left(37^2\right)^{600}=1369^{600}\)

\(1369^{660}>1331^{660}\Rightarrow11^{1979}<37^{1320}\)

b) \(1990^{10}+1990^9=1990^9\left(1990+1\right)=1990^9.1991<1991^9.1991\)

\(\Rightarrow1990^{10}+1990^9<1991^{10}\)

Vậy \(1990^{10}+1990^9<1991^{10}\)

21 tháng 2 2016

a)111979<371320

b)199010+19909<199110