K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a, => (xy-2x)-(y-2) = 11+2

=> (y-2).(x-1) = 13

Đến đó dùng quan hệ ước bội để giải nha

b, => x+2 > 0 ; y+3 < 0 hoặc x+2 < 0 ; y+3 < 0

=> x > -2 ; y < -3 hoặc x < -2 ; y > -3

c, => x+1 > 0 ; y-2 > 0 hoặc x+1 < 0 ; y-2 < 0

=> x > -1 ; y > 2 hoặc x < -1 ; y < 2

Tk mk nha

Bài 1:a) Ta có: \(1-3x⋮x-2\)

\(\Leftrightarrow-3x+1⋮x-2\)

\(\Leftrightarrow-3x+6-5⋮x-2\)

mà \(-3x+6⋮x-2\)

nên \(-5⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(-5\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{3;1;7;-3\right\}\)

Vậy: \(x\in\left\{3;1;7;-3\right\}\)

b) Ta có: \(3x+2⋮2x+1\)

\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)

\(\Leftrightarrow6x+4⋮2x+1\)

\(\Leftrightarrow6x+3+1⋮2x+1\)

mà \(6x+3⋮2x+1\)

nên \(1⋮2x+1\)

\(\Leftrightarrow2x+1\inƯ\left(1\right)\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

Vậy: \(x\in\left\{0;-1\right\}\)

8 tháng 2 2021

Bài 1 :

a, Có : \(1-3x⋮x-2\)

\(\Rightarrow-3x+6-5⋮x-2\)

\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)

- Thấy -3 ( x - 2 ) chia hết cho  x - 2

\(\Rightarrow-5⋮x-2\)

- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy ...

b, Có : \(3x+2⋮2x+1\)

\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)

\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)

- Thấy 1,5 ( 2x +1 ) chia hết cho  2x+1

\(\Rightarrow1⋮2x+1\)

- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x\in\left\{0;-1\right\}\)

Vậy ...

1.

a)-27

b)0

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

10 tháng 8 2016

Bài 1:

\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

Voqis x=-1;y=3 ta có:

\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)

b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)

Với x=-1;y=3 ta có:

\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)

c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)

Với x=-1;y=3 ta có:

\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)

d) phân tích tt