K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Có : (1+1/2+1/3+....+1/100)+(1/2+2/3+....+99/100)

= 1+(1/2+1/2)+(1/3+2/3)+.....+(1/100+99/100) ( có 99 cặp )

= 1+1+1+....+1 ( có 100 số 1 )

= 100

=> 100-(1+1/2+1/3+....+1/100)=1/2+2/3+3/4+....+99/100

Tk mk nha

14 tháng 1 2018

vì sao đang bằng lại chuyển thành cộng

6 tháng 10 2018

\(VP=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

\(VP=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

\(VP=\frac{2}{2}-\frac{1}{2}+\frac{3}{3}-\frac{1}{3}+\frac{4}{4}-\frac{1}{4}+...+\frac{100}{100}-\frac{1}{100}\)

\(VP=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+...+1-\frac{1}{100}\)

\(VP=100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=VT\) ( đpcm ) 

Mk nghĩ \(VT=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\) bn xem lại đề có nhầm ko 

Chúc bạn học tốt ~ 

6 tháng 10 2018

ko mk thấy đúng mà

ko nhầm đề đâu

1 tháng 4 2016

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....................+\frac{1}{100}\right)\)

\(=100\cdot1-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-..........................-\frac{1}{100}\)

\(=1-1+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+.......................+\left(1-\frac{1}{100}\right)\)

\(=0+\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+..................+\frac{99}{100}\left(ĐPCM\right)\)

1 tháng 4 2016

áp dụng quy tắc dấu ngoặc ta có: 100 - ( 1+1/2+1/3+...+1/100) = 100 - 1 - 1/2 - 1/3 - ...-1/100

                                                                                            =( 1-1/2)+(1-1/3)+(1-1/4)+...+(1-1/100)    / có 100 số hạng

                                                                                            =1/2+2/3+3/4+...+99/100

17 tháng 1 2018

Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(3A+A=4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4A< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)

Đặt \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(3B=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(B+3B=4B=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow B< \frac{3}{4}\) (2)

Từ (2) và (2) => \(4A< B< \frac{3}{4}\Rightarrow A< \frac{3}{16}\) (đpcm)

18 tháng 1 2018

\(A=\frac{7n-1}{4};B=\frac{5n+3}{12}\)

Tìm n để A,B đồng thời là các số nguyên tố

27 tháng 6 2020

Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+....\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow4A=A+3A=\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.....\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....\frac{1}{3^{98}}-\frac{1}{3^{99}}\Rightarrow4A< B\left(1\right)\)

\(\Rightarrow3B=3-1+\frac{1}{3}-\frac{1}{3^2}+....\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(4B=B+3B=3-\frac{1}{3^{99}}< 3\Rightarrow4B< 3\Rightarrow B< \frac{3}{4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4A< B< \frac{3}{4}\Rightarrow4A< \frac{3}{4}\Rightarrow A< \frac{3}{4}:4\Rightarrow A< \frac{3}{4}.\frac{1}{4}\Rightarrow A< \frac{3}{16}\)

=> đpcm.

18 tháng 3 2016

Đặt A=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) +\(\frac{3}{3^3}\) - \(\frac{4}{3^4}\)+...+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)

=> 3A=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\)+...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4A=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)\(\frac{100}{3^{100}}\)

=> 4A<1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\) (1)

Đặt B=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)

=> B=2+ \(\frac{1}{3}\) - \(\frac{1}{3^2}\) +...+\(\frac{1}{3^{97}}\) - \(\frac{1}{3^{98}}\)

=> 4B=B+3B=3-\(\frac{1}{3^{99}}\)<3 => A<\(\frac{3}{4}\) (2)

Từ (1) và (2) ta có: 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.

 

18 tháng 3 2016

Bạn ơi, mình cx đang nghĩ câu này.