K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Đặt A=235+2312+232003=234.(23+238+231999)

ta có, 23 + 238+231999 chia hết cho 23 nhưng không chia hết cho 232 => 23+238+231999 không phải số chính phương 

=> A không phải số chính phương.

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

Một số được coi là scp nếu khi phân tích ra dạng các thừa số nguyên tố thì số mũ ứng với mỗi thừa số nguyên tố đó phải chẵn.

$23^5+23^{12}+23^{2003}=23^5(1+23^7+23^{1998})$ chia hết cho $23^5$ nhưng không chia hết cho $23^6$ (do $1+23^7+23^{1998}\not\vdots 23$)

Tức là khi phân tích ra thừa số nguyên tố thì $23^5+23^{12}+23^{2003}$ chứa thừa số nguyên tố là 23 nhưng số mũ tối đa là 5 (là số lẻ) 

Do đó số trên không phải scp.

16 tháng 11 2018

Giả sử rằng với n = k (k thuộc N) ta có 2k+1 và 6k+5 ko phải là 2 số nguyên tố cùng nhau, nghĩa là UCLN(2k+1;6k+5) = d (d > 1) 
d là ước của 2k+1 và 6k+5 ---> d là ước của 6k+5 - 3.(2k+1) = 2 ---> d = 2 (vì d > 1) 
Nhưng điều đó là vô lý vì 2 không thể là ước của 2k+1 và 6k+5 được 
Do đó điều giả sử trên là sai ---> 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N.

25 tháng 7 2016

\(n^2+n+2=n\left(n+1\right)+2\)

n(n+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 3. 

Mà 2 không chia hết cho 3

=> n(n + 1) + 2 không chia hết cho 3

Vậy : \(n^2+n+2\) không chia hết cho 2

25 tháng 7 2016

sai rùi bn,n(n+1) là số tự nhiên liên tiếp thì chia hết cho 2 nhé,3 số tự nhiên liên tiếp mới chia hết cho 3

15 tháng 11 2018

Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))

\(\Rightarrow\)2n+5\(⋮\)d

         6n+11\(⋮\)d

\(\Rightarrow\)12n+30\(⋮\)d

          12n+22\(⋮\)d

\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d

\(\Rightarrow\)8\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}

Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ

\(\Rightarrow\)d=lẻ=1

Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)

15 tháng 11 2018

Gọi (2n + 5 , 6n + 11) = d   (d thuộc N*)

=>   2n + 5 \(⋮\)d

       6n + 11 \(⋮\)d

=>  3(2n + 5) \(⋮\)d

       6n + 11  \(⋮\)d

=>   6n + 15  \(⋮\)d

       6n + 11   \(⋮\)d

=> (6n + 15) - (6n + 11)  \(⋮\)d

=> 6n + 15 - 6n - 11  \(⋮\)d

=> 15 - 11    \(⋮\)d    

=> 4        \(⋮\)d               

=> d​  \(\in\) Ư(4)

Mà ta thấy 2n + 5 và 6n + 11 là số lẻ

Vậy d  \(\in\) Ư(4) là số lẻ 

Mà Ư(4) là số lẻ là {1}  => d = 1

Vậy (2n + 5 , 6n + 11) = 1   hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau

25 tháng 7 2016

                                                                        Giải

            Ta có : n^2+ n + 2 = n ^(2+1) + 2

                                       = n^3 + 2

       Vì 2 không chia hết cho 3 nên (n^3 + 2) hay (n^2 + N + 2) cũng không chia hết cho 3 (ĐPCM)

11 tháng 8 2016

bài như cc