chứng minh rằng:235+2312+232003 không là số chinh phương
giúp mk giải chi tiết! mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Một số được coi là scp nếu khi phân tích ra dạng các thừa số nguyên tố thì số mũ ứng với mỗi thừa số nguyên tố đó phải chẵn.
$23^5+23^{12}+23^{2003}=23^5(1+23^7+23^{1998})$ chia hết cho $23^5$ nhưng không chia hết cho $23^6$ (do $1+23^7+23^{1998}\not\vdots 23$)
Tức là khi phân tích ra thừa số nguyên tố thì $23^5+23^{12}+23^{2003}$ chứa thừa số nguyên tố là 23 nhưng số mũ tối đa là 5 (là số lẻ)
Do đó số trên không phải scp.
Giả sử rằng với n = k (k thuộc N) ta có 2k+1 và 6k+5 ko phải là 2 số nguyên tố cùng nhau, nghĩa là UCLN(2k+1;6k+5) = d (d > 1)
d là ước của 2k+1 và 6k+5 ---> d là ước của 6k+5 - 3.(2k+1) = 2 ---> d = 2 (vì d > 1)
Nhưng điều đó là vô lý vì 2 không thể là ước của 2k+1 và 6k+5 được
Do đó điều giả sử trên là sai ---> 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N.
\(n^2+n+2=n\left(n+1\right)+2\)
n(n+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 3.
Mà 2 không chia hết cho 3
=> n(n + 1) + 2 không chia hết cho 3
Vậy : \(n^2+n+2\) không chia hết cho 2
sai rùi bn,n(n+1) là số tự nhiên liên tiếp thì chia hết cho 2 nhé,3 số tự nhiên liên tiếp mới chia hết cho 3
Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))
\(\Rightarrow\)2n+5\(⋮\)d
6n+11\(⋮\)d
\(\Rightarrow\)12n+30\(⋮\)d
12n+22\(⋮\)d
\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d
\(\Rightarrow\)8\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}
Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ
\(\Rightarrow\)d=lẻ=1
Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)
Gọi (2n + 5 , 6n + 11) = d (d thuộc N*)
=> 2n + 5 \(⋮\)d
6n + 11 \(⋮\)d
=> 3(2n + 5) \(⋮\)d
6n + 11 \(⋮\)d
=> 6n + 15 \(⋮\)d
6n + 11 \(⋮\)d
=> (6n + 15) - (6n + 11) \(⋮\)d
=> 6n + 15 - 6n - 11 \(⋮\)d
=> 15 - 11 \(⋮\)d
=> 4 \(⋮\)d
=> d \(\in\) Ư(4)
Mà ta thấy 2n + 5 và 6n + 11 là số lẻ
Vậy d \(\in\) Ư(4) là số lẻ
Mà Ư(4) là số lẻ là {1} => d = 1
Vậy (2n + 5 , 6n + 11) = 1 hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau
Đặt A=235+2312+232003=234.(23+238+231999)
ta có, 23 + 238+231999 chia hết cho 23 nhưng không chia hết cho 232 => 23+238+231999 không phải số chính phương
=> A không phải số chính phương.