Chứng minh √2 + √3 + √5 là số vô tỉ (dùng phản chứng nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\sqrt{2}\)là số hữu tỉ thì \(\sqrt{2}=\frac{a}{b}\left[\left(a,b\right)=1\right]\)
\(\Rightarrow a^2=2b^2\)(1)\(\Rightarrow a^2⋮2\)
Mà 2 là số nguyên tố nên \(a⋮2\)
Đặt a = 2k.Thay vào (1), ta được: \(4k^2=2b^2\Rightarrow2k^2=b^2\)
\(\Rightarrow b^22⋮\).Mà 2 là số nguyên tố nên \(b⋮2\)
Vậy a và b cùng chia hết cho 2, trái với (a,b) =1
Vậy \(\sqrt{2}\)là số vô tỉ hay \(\sqrt{2}+3\)là số vô tỉ (đpcm)
Vì 3 là số hữu tỉ rồi nên phải cần c/m √2 là số vô tỉ là đc!
Giả sử √2 là số hữu tỉ
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1)
√2 = a/b
<=> 2 = a²/b²
<=> b² = a²/2
=> a² chia hết cho 2
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2)
=> a = 2k. Thay vào :
2 = a²/b²
<=> 2 = (2k)²/b²
<=> b² = 2k²
=> b² chia hết cho 2
=> b chia hết cho 2 (3)
Từ (2) và (3) => ƯC (a ; b) = 2
=> Mâu thuẫn (1)
=> Điều giả sử là sai
=> √2 là số vô tỉ (đpcm)
* Giả sử 5 2 là số hữu tỉ a, nghĩa là: 5 2 = a
Suy ra: 2 = a / 5 hay 2 là số hữu tỉ.
Điều này vô lí vì 2 là số vô tỉ.
Vậy 5 2 là số vô tỉ.
* Giả sử 3 + 2 là số hữu tỉ b, nghĩa là:
3 + 2 = b
Suy ra: 2 = b - 3 hay 2 là số hữu tỉ.
Điều này vô lí vì 2 là số vô tỉ.
Vậy 3 + 2 là số vô tỉ.
a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1
\(\implies\) \(b\sqrt{2}=a\)
\(\implies\) \(b^2.2=a^2\)
\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(a\) chia hết cho \(2\)
\(\implies\) \(a^2\) chia hết cho \(4\)
\(\implies\) \(b^2.2\) chia hết cho \(4\)
\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(b\) chia hết cho \(2\)
\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)
\( \implies\) Điều giả sai
\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )
b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )
\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ
Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ
\( \implies\) Mâu thuẫn
\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )
) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ
cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự
vì căn 2 là số vô tỉ
vì cắn 3 là số vô tỉ
và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ
giả sử căn 2 là số hữu tỉ thì có dạng m/n (m,n tối giản)
nên 2=m^2/n^2
<=>m^2=2n^2
=>m chia hết cho 2 đặt m=2k nên m^2=4k^2
nên n chia hết cho 2
từ trên ta có m và n cùng chia hết cho 2
=>mâu thuẫn giả thuyết
tương tự căn 3 căn 5 cũng như vậy