Chứng Minh \(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=\left(x^5-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Dễ thấy hàm $f(x)=x(x-1)(x-2)(x-3)(x-4)-1$ liên tục trên $\mathbb{R}$
$f(0)=-1<0$
$f(\frac{1}{2})>0$
$f(1)=-1<0$
$f(\frac{5}{2})>0$
$f(3)=-1<0$
$f(5)>0$
Do đó:
$f(0)f(\frac{1}{2})<0$ nên pt có ít nhất 1 nghiệm trong khoảng $(0; \frac{1}{2})$
$f(\frac{1}{2})f(1)<0$ nên pt có ít nhất 1 nghiệm trong khoảng $(\frac{1}{2}; 1)$
$f(1)f(\frac{5}{2})<0$ nên pt có ít nhất 1 nghiệm trong khoảng $(1; \frac{5}{2})$
$f(\frac{5}{2})f(3)<0$ nên pt có ít nhất 1 nghiệm trong khoảng $(\frac{5}{2};3)$
$f(3)f(5)<0$ nên pt có ít nhất 1 nghiệm trong khoảng $(3;5)$
Vậy tóm lại pt có ít nhất 5 nghiệm. Mà bậc của $f(x)$ là 5 nên nó chỉ có tối đa 5 nghiệm.
Tức là pt $f(x)=0$ có đúng 5 nghiệm thực.
a)
\(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{x+1-x}{x\left(x+1\right)}=\dfrac{1}{x\left(x+1\right)}\left(đpcm\right)\)
b)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}\)
a,\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b,Áp dụng câu a:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
a)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) S =\(\frac{1}{x}-\frac{1}{x+5}+\frac{1}{x+5}=\frac{1}{x}\)
\(x\left(x+1\right)^4+x\left(x+1\right)^3+x\left(x+1\right)^2+\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[x\left(x+1\right)^2+x\left(x+1\right)+x+1\right]\)
\(=\left(x+1\right)^2\left[x\left(x+1\right)\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\right]\)
\(=\left(x+1\right)^2\left\{\left(x+1\right)\left[x\left(x+1\right)+x+1\right]\right\}\)
\(=\left(x+1\right)^2\left\{\left(x+1\right)\left[x^2+x+x+1\right]\right\}\)
\(=\left(x+1\right)^2\left[\left(x+1\right)\left(x^2+2x+1\right)\right]\)
\(=\left(x+1\right)^2\cdot\left(x+1\right)^3\)
\(=\left(x+1\right)^5\left(đpcm\right)\)
T ko biết làm, chỉ hỏi liên thiên thôi :)))
Hủ phải không???? OvO Dưa Trong Cúc
A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề
\(A=\left(x^3+x^2+x\right)-\left(x^3+x^2\right)-x+5\)5
\(A=x^3+x^2+x-x^3-x^2-x+5\)
=> A=5
=> A luôn = 5 với mọi x => A không phụ thuộc vào x
\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(B=\left(2x^2+x\right)-\left(x^3+2x^2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
=> B= 3
=> B luôn =3 với mọi x => B không phụ thuộc vào x
\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(C=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)
C=24
=> C=24 với mọi x => C không phụ thuộc vào x
Câu D kí tự cuối có vẻ bạn gõ sai nên mình không làm được, sorry nhiều
A = x(x2 + x + 1) - x2(x + 1) - x + 5
A = x.x2 + x.x + x.1 + (-x2).x + (-x2).1 - x + 5
A = x3 + x2 + x - x3 - x2 - x + 5
A = (x3 - x3) + (x2 - x2) + (x - x) + 5
A = 0 + 0 + 0 + 5
A = 5
Vậy: Biểu thức không phụ thuộc giá trị của biến.
B = x(2x + 1) - x2(x + 2) + x3 - x + 3
B = x.2x + x.1 + (-x2).x + (-x2).2 + x3 - x + 3
B = 2x2 + x - x3 - 2x2 + x3 - x + 3
B = (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
B = 0 + 0 + 0 + 3
B = 3
Vậy: Biểu thức không phụ thuộc giá trị của biến.
C = 4(6 - x) + x2(2 + 3x) - x(5x - 4) + 3x2(1 - x)
C = 4.6 + 4.(-x) + x2.2 + x2.3x + (-x).5x + (-x).(-4) + 3x2.1 + 3x2.(-x)
C = 24 - 4x + 2x2 + 3x3 - 5x2 + 4x + 3x2 - 3x3
C = 24 + (-4x + 4x) + (2x2 - 5x2 + 3x2) + (3x3 - 3x3)
C = 24 + 0 + 0 + 0
C = 24
Vậy: Biểu thức không phụ thuộc giá trị của biến.
D viết sai thì chịu
a)
\(\begin{array}{l}A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\\A = x - 0,2 - \dfrac{1}{3}x - 2 + 2 - \dfrac{2}{3}x\\ = \left( {x - \dfrac{1}{3}x - \dfrac{2}{3}x} \right) + \left( {\dfrac{{ - 1}}{2} - 2 + 2} \right)\\ = - \dfrac{1}{2}\end{array}\)
Vậy \(A = - \dfrac{1}{2}\) không phụ thuộc vào biến x
b)
\(\begin{array}{l}B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\\B = \left[ {x - {{\left( {2y} \right)}^3}} \right] - {x^3} + 8{y^3} - 10\\B = {x^3} - 8{y^3} - {x^3} + 8{y^3} - 10 = - 10\end{array}\)
Vậy B = -10 không phụ thuộc vào biến x, y.
c)
\(\begin{array}{l}C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\\{\rm{C = 4}}\left( {{x^2} + 2{\rm{x}} + 1} \right) + \left( {4{{\rm{x}}^2} - 4{\rm{x}} + 1} \right) - 8\left( {{x^2} - 1} \right) - 4{\rm{x}}\\C = 4{{\rm{x}}^2} + 8{\rm{x}} + 4 + 4{{\rm{x}}^2} - 4{\rm{x}} + 1 - 8{{\rm{x}}^2} + 8 - 4{\rm{x}}\\C = \left( {4{{\rm{x}}^2} + 4{{\rm{x}}^2} - 8{{\rm{x}}^2}} \right) + \left( {8{\rm{x}} - 4{\rm{x}} - 4{\rm{x}}} \right) + \left( {4 + 1 + 8} \right)\\C = 13\end{array}\)
Vậy C = 13 không phụ thuộc vào biến x
\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\)
\(=x\left(x^4+x^3+x^2+x+1\right)-\left(x^4+x^3+x^2+x+1\right)\)
\(=x^5+x^4+x^3+x^2+x-x^4-x^3-x^2-x-1\)
\(=\left(x^5-x\right)+\left(x^4-x^4\right)+\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)\)
\(=x^5-1\) (đpcm)
Mong Các Thầy Cô Giáo Giải Giúp