cho a3 - 3ab2 = 19 và b3 - 3a2b = 98. Tính E = a2 + b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
b: Ta có: \(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
\(=1-3ab+3ab\)
=1
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.