có hay không một tam gaics mà ba cạnh của nó:
a) tỉ lệ thuận với các số 3; 4; 8?
b) Tỉ lệ thuận với các số 1/3; 1/4; 1/8?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Goi x,y,z lan luot la cac goc cua tam giac tren. ta lap duoc:
x/3=y/5=z/7
Gia xu 60 do la so do cua goc thu nhat thi ta suy ra: x/3=y/5=z/7=60/3=20
=> x=60 ; y=100 ; z=140
Do 60+100+140 khong bang 180 nen tam giac nay khong ton tai.
Gia xu 60 do la so do cua goc thu 2 thi suy ra: x/3=y/5=z/7=60/5=12
=> x=36 ; y=60 ; z=84
Do 36+60+84 bang 180 nen tam giac nay ton tai
Gia xu 60 la so do cua goc thu 3 thi suy ra: x/3=y/5=z/7=60/7
=> x=180/7 ; y=300/7 ; z=60
Do 180/7+300/7+60 khong bang 180 nen tam giac nay khong ton tai
Vay tam giac tren chi co the ton tai khi goc thu 2 hay goc ti le voi 5 cua no co so do la 60 do.
2) goi cac canh cua tam giac nay lan luot la a,b,c. Theo de bai ta co:
a=3k ; b=4k ; c=8k
Vi a+b ( hay 3k+4k=7k) < c ( hay 8k ) nen tam giac nay khong ton tai
Gọi 3 cạnh tam giác đó lần lượt là \(a,b,c\). Ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{8}=\frac{b+c}{12}=\frac{c+a}{10}\Leftrightarrow\frac{a}{3}=\frac{b+c}{12};\frac{b}{5}=\frac{a+c}{10};\frac{c}{7}=\frac{a+b}{8}\)(viết lại cho dễ thấy)
\(\Rightarrow\hept{\begin{cases}4a=b+c\Leftrightarrow a< b+c\\2b=a+c\Leftrightarrow b< a+c\\\frac{8}{7}c=a+b\Leftrightarrow c< a+b\end{cases}}\)
Ta thấy các cạnh của tam giác đều thỏa mãn bất đẳng thức :
Trong một tam giác, tổng độ dài hai cạnh bao giờ cũng lớn hơn cạnh còn lại
do đó có tồn tại một tam giác sao cho 3 cạnh của nó tỉ lệ thụân với 3;5;7
.
Gọi độ dài 3 cạnh lần lượt là a,b,c (a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
\(\dfrac{a}{3}=3\Rightarrow a=9\\ \dfrac{b}{4}=3\Rightarrow b=12\\ \dfrac{c}{5}=3\Rightarrow c=15\)
Vậy độ dài 3 cạnh tam giác lần lượt là 9, 12, 15 cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
Do đó: a=9; b=12; c=15
gọi 3canhj cua tam giac lần lượt la x,y,z
tbr ta có
x/3 =y/4 =z/5
x+y+x =180 độ
áp dụng....
x/3=y/4=z/5=x+y+z/3+4+5=180 độ/12=15 độ
x/3=15 độ suy ra x=45 độ
y/4=15độ suy ra y=60 độ
z/5=15 độ suy ra z=75 độ
vậy....................................
Gọi ba cạnh tam giác lần lượt là x;y;z(x;y;z>0)
Có ba cạnh tam giác tỉ lệ thuận với 3;4;5
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Có TB cộng của ba cạnh tam giác là 36 cm
Vậy tổng ba cạnh tam giác là; 36*3=108 cm
Vậy x+y+z=108
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{108}{12}=9\)
Suy ra\(\hept{\begin{cases}x=9\cdot3\\y=9\cdot4\\z=9\cdot5\end{cases}\Leftrightarrow\hept{\begin{cases}x=27\left(cm\right)\\y=36\left(cm\right)\\z=45\left(cm\right)\end{cases}}}\)
Vậy : cạnh 1 dài 27cm; cạnh 2 dài 36cm ;cạnh 3 dài 45 cm
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{44}{11}=4\)
Do đó: a=8; b=16; c=20
1, Gọi các cạnh của tam giác lần lượt là a,b,c
Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và \(a+b+c=45\)
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{45}{9}=5\)
\(\Rightarrow\) \(a=10;b=15;c=20\)
có hay không một tam gaics mà ba cạnh của nó:
a) tỉ lệ thuận với các số 3; 4; 8?
b) Tỉ lệ thuận với các số 1/3; 1/4; 1/8?
Trả lời:
a) Đéo
b) Đéo
không vì khi đó sẽ vi phạm bất đẳng thức tam giác