Cho tam giác ABC vuông tại A.M là trung điểm BC.Trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD
a,CMR:tam giác AMB=tam giác DMC
b,CMR:AC vuông góc DC
c,CMR:AM=1/2 BC
nhớ giải chi tiết giúp mik nha, vẽ cả hình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AMB\) và \(\Delta DMC\) có :
\(AM=MD\left(gt\right)\)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
\(BM=MC\left(gt\right)\)
=> \(\Delta AMB\) = \(\Delta DMC\) (c.g.c)
b) Xét \(\Delta AMC\) và \(\Delta BMD\) có :
\(BM=MC\left(gt\right)\)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
\(AM=MC\left(gt\right)\)
=> \(\Delta AMC\) =\(\Delta BMD\) (c.g.c)
Mà ta có : \(\left\{{}\begin{matrix}\Delta ABC=\Delta AMB+\Delta AMC\\\Delta BDC=\Delta BMD+\Delta DMC\end{matrix}\right.\)
=> \(\Delta ABC=\Delta BDC\)
Có thêm : \(\widehat{BAM}+\widehat{CAM}=90^o\)
=> \(\widehat{DCM}+\widehat{ACM}=90^o\)
Do đó : \(AC\perp BC\left(đpcm\right)\)
c) Theo giả thuyết có :
\(\Delta ABC\) vuông tại A
Mà có : \(BM=MC\left(gt\right)\)
=> AM là đường trugn tuyến trong tam giác vuông
\(\Rightarrow AM=\dfrac{1}{2}BC\) (Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> đpcm
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC=BD
b: Ta có: ABDC là hình bình hành
nên AC//BD
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ta có; ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
c: Xét ΔNAB và ΔNCE có
NA=NC
\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)
NB=NE
Do đó: ΔNAB=ΔNCE
=>AB=CE
Ta có: ΔNAB=ΔNCE
=>\(\widehat{NAB}=\widehat{NCE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
Ta có: AB//CE
AB//CD
CE,CD có điểm chung là C
Do đó: E,C,D thẳng hàng
Ta có: EC=AB
CD=AB
Do đó: EC=CD
mà E,C,D thẳng hàng
nên C là trung điểm của ED
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét ΔMBD và ΔMCA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
Do đó: ΔMBD=ΔMCA
=>\(\widehat{MBD}=\widehat{MCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//AC
c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có
DB=AC
\(\widehat{DBK}=\widehat{ACH}\)
Do đó: ΔDKB=ΔAHC
=>BK=CH
d: Xét tứ giác ABCE có
I là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE và AB=CE
Ta có; ΔMAB=ΔMDC
=>AB=DC
Ta có: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
Ta có: AB//DC
AB//CE
DC,CE có điểm chung là C
Do đó: D,C,E thẳng hàng
ta có: AB=CD
AB=CE
Do đó: DC=CE
mà D,C,E thẳng hàng
nên C là trung điểm của DE
#\(N\)
`a,` Xét Tam giác `AMB` và Tam giác `CME` có:
`AM = ME (g``t)`
\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`
`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`
`-> AB = CE (2` cạnh tương ứng `)`
Xét Tam giác `ABH` và Tam giác `DBH` có:
`HA = HD (g``t)`
\(\widehat{BHA}=\widehat{BHD}=90^0\)
`BH` chung
`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`
`=> AB = BD (2` cạnh tương ứng `)`
Mà `AB = CE -> BD = CE`
`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:
`HA = HD (g``t)`
\(\widehat{AHM}=\widehat{DHM}=90^0\)
`HM` chung
`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`
`=> AM = DM (2` cạnh tương ứng `)`
Xét Tam giác `AMD` có: `AM = DM`
`->` Tam giác `AMD` là tam giác cân.
a) Xét \(\Delta\)BMC và \(\Delta\)DMA có:
BM = DM (gt)
\(\widehat{BMC}\) = \(\widehat{DMA}\) (đối đỉnh)
MC = MA (suy từ gt)
=> \(\Delta\)BMC = \(\Delta\)DMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì \(\Delta\)BMC = \(\Delta\)DMA (câu a)
nên \(\widehat{BCA}\) = \(\widehat{CAD}\) (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét \(\Delta\)DCA và \(\Delta\)BAC có:
CA chung
\(\widehat{CAD}\) = \(\widehat{ACB}\) ( cm trên)
DA = BC (cm trên)
=> \(\Delta\)DCA = \(\Delta\)BAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\) = 90 độ (góc t ư)
Do đó CD \(\perp\) AC