K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

ai mà biết mình giờ làm 

20 tháng 3 2017

= I DON'T NO NHA, NHỚ K MK ĐÓ

17 tháng 7 2018

a, <=>y2-32 <=> y2 -9 (hằng đẳng thức số 3)

b, <=> m3+n3 ( hằng đẳng thức số 6)

c, <=> 23-a3 (__________________số 7)

d, <=> (a-b-c-a+b-c )( a-b-c+a-b+c) 

<=> -2c*2a= -4ac

e, <=> (a-x-y-a-x+y) [(a-x-y) 2+(a-x-y)(a+x-y)+(a+x-y)2]

(Nhân phá ngoặc) -)

d <=> (1-x2)[(1+x2)2-x2)

<=> (1-x2)(1+2x2)

<=> 1+2x2-x2-2x4

<=> 1+x2-2x4

NV
21 tháng 7 2021

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n-1}{n!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{n-1}{n!}\)

\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{n}{n!}-\dfrac{1}{n!}\)

\(=1-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{\left(n-1\right)!}-\dfrac{1}{n!}\)

\(=1-\dfrac{1}{n!}\)

15 tháng 7 2019

1)\(n^2\left(n-1\right)\left(n+1\right)-\left(n^2+2\right)\left(n^2-2\right)=n^2\left(n^2-1\right)-\left(n^4-4\right)=n^4-n^2-n^4+4\)

\(=-n^2+4\)

2)\(\left(y+3\right)\left(y-3\right)\left(y^2+9\right)-\left(y^2-4\right)\left(y^2+4\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-16\right)\)

\(=y^4-81-y^4+16=-65\)

3)\(\left(x-2y+3\right)\left(x+2y-3\right)-\left(x-2y\right)\left(x+2y\right)=\left(x+3\right)^2-4y^2-\left(x^2-4y^2\right)\)

\(=x^2+6x+9-4y^2-x^2+4y^2=6x+9\)

4)\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

5)\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)

6)\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)

Học tốt nha bạn !

4 tháng 1 2018

sxdhjkhafn gwudahsjc nbsdluihjckmdln933sdvfdzfs

28 tháng 6 2017

A=\(2^{n-1}+2.2^n+3-8.2^{n-4}-16.2^n=\)\(\frac{2^n}{2}+2.2^n-8.\frac{2^n}{2^4}-16.2^n+3\)

=\(2^n\left(\frac{1}{2}+2-\frac{8}{16}-16\right)+3\)=\(-14.2^n+3\)

21 tháng 7 2018

\(M=\dfrac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)

\(=\dfrac{n^3+n^2+n^2+n-n-1}{\left(n+1\right).\left(n^2-n+1\right)+2n.\left(n+1\right)}\)

\(=\dfrac{n^2\left(n+1\right)+n\left(n-1\right)-\left(n+1\right)}{\left(n+1\right).\left(n^2-n+1+2n\right)}\)

\(=\dfrac{\left(n+1\right).\left(n^2+n-1\right)}{\left(n+1\right).\left(n^2+n+1\right)}\)

\(=\dfrac{n^2+n-1}{n^2+n+1}\)

22 tháng 7 2018

hàng thứ 3 là dấu + không phải dây - nha