cho tam giác ABC vuông tại A , hai đường phân giác BM và CN . Từ M và N kẻ MM' và NN' vuông góc với BC (M',N' thuộc BC ) Chứng minh rằng góc M'AN' = 45 độ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
11 tháng 3 2017
Tự vẽ hình nhé
a) t/g BAM = t/g BM'M (cạnh huyền-góc nhọn)
=> BA = BM' (2 cạnh t/ứ)
Gọi K là giao điểm của BM và AM'
t/g BAK = t/g BM'K (c.g.c)
=> BAK = BM'K (2 góc t/ứ)
=> 90o - BAK = 90o - BM'K
=> BAM - BAK = BM'M - BM'K
=> MAM' = MM'A
=> t/g AMM' cân tại M (dấu hiệu nhận biết t/g cân)
Chứng minh tương tự với t/g còn lại
b) xem lại đề
11 tháng 3 2017
a.Xét tam giác ACN và N'CN có:
góc CAN = CN'N = 90*
CN là cạnh chung
góc NCA = NCN' (gt)
Suy ra :tam giác ACN = N'CN ( cạnh huyền góc nhọn )
Suy ra: NA = NN' ( hai cạnh tương ứng )
Vậy tam giác ANN' cân tại N
Tương tự ta có tam giác AMM' cân tại M.
b.