K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

5 tháng 1 2018

sorry nha!Mik ko bít làm.???

8 tháng 4 2016

ngu nguoi

8 tháng 4 2016

ngu nguoi

12 tháng 7 2017

Ta chứng minh bất đẳng thức sau  

Với x, y, z > 0 ta luôn có  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)  (1)

Theo BĐT Cô-si

\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)

\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)

\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)

Cộng vế theo vế ta được:  \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)

\(\Leftrightarrow\)  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

Vậy (1) đc c/m

Bất đẳng thức cần c/m có thể viết lại thành

\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)

Áp dụng (1) ta có  

\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

Tương tự  

\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)

\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)

Cộng theo vế suy ra đpcm.

22 tháng 6 2019

Ta có \(a^2+b^2+c^2\ge ab+bc+ac\)

Áp dụng 

=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)\)

=> \(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Khi đó 

\(VT\le\frac{1}{a+b+c+d}\left(\frac{1}{abc}+\frac{1}{bcd}+\frac{1}{cda}+\frac{1}{dab}\right)\)

=> \(VT\le\frac{1}{a+b+c+d}.\frac{a+b+c+d}{abcd}=1\)

Dấu bằng xảy ra khi \(a=b=c=d=1\)

Vậy MaxA=1 khi a=b=c=d=1

23 tháng 6 2019

a;b;c la so thuc thi chua chac a;b;c > 0 dau

30 tháng 4 2019

Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath

30 tháng 4 2019

Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2

\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )

Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc

\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c ) 

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Tương tự , b4 + c4 + d4 ​​​\(\ge\)​bcd ( b + c + d ) ; a4 + b4 + d4 ​\(\ge\)​abd ( a + b + d ) ; c4 + d4 + a4 ​\(\ge\)​acd ( a + c + d ) 

\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)\(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)

\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

Cộng từng vế theo vế , ta được : 

\(\le\)1  ( đặt A = biểu thức ấy nhé )

Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1

25 tháng 3 2020
https://i.imgur.com/bx8s8Hy.jpg
25 tháng 3 2020
https://i.imgur.com/AISWXxC.jpg
5 tháng 3 2020

Ta có: abcd=1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)

Do đó: a+b-\(\left(\frac{1}{a}+\frac{1}{b}\right)+c+d-\left(\frac{1}{c}+\frac{1}{d}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\frac{1}{ab}\right)+\left(c+d\right)\left(1-\frac{1}{cd}\right)=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(ab-1\right)}{ab}+\left(c+d\right)\left(1-ab\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-c-d\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left(a+b-abc-abd\right)=0\)

\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(1-ad\right)\right]=0\)

\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(abcd-ad\right)\right]=0\)

\(\Leftrightarrow\left(ab-1\right)\left(1-bc\right)\left(a-abd\right)=0\)

\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)

<=> ab-1=0 hoặc 1-bc=0 hoặc 1-bd=0

<=> ab=1 hoặc bc=1 hoặc bd=1

\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)

12 tháng 12 2015

Có:\(a+b+c+d\ge4\sqrt[4]{abcd}\)(BĐT Cô-si)
\(\Rightarrow\frac{a+b+c+d}{4}\ge\frac{4\sqrt[4]{abcd}}{4}=\sqrt[4]{abcd}\)
\(\Rightarrow\left(\frac{a+b+c+d}{4}\right)^4\ge abcd\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)

26 tháng 10 2019

cái này hình như bđt cosi cho 4 số thì phải 

26 tháng 10 2019

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}a+b\ge2\sqrt{ab}\\c+d\ge2\sqrt{cd}\end{cases}}\)

\(\Rightarrow a+b+c+d\ge2\left(\sqrt{ab}+\sqrt{cd}\right)\)

\(\Rightarrow\frac{a+b+c+d}{4}\ge\frac{\sqrt{ab}+\sqrt{cd}}{2}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{abcd}}=2\sqrt[4]{abcd}\)

\(\Rightarrow\frac{\sqrt{ab}+\sqrt{cd}}{2}\ge\frac{2\sqrt[4]{abcd}}{2}=\sqrt[4]{abcd}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{a+b+c+d}{4}\ge\frac{\sqrt{ab}+\sqrt{cd}}{2}\ge\sqrt[4]{abcd}\)

\(\Rightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Chúc bạn học tốt !!!