Chứng minh rằng: \(21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)\forall a\ge3,b\ge3\)
Dấu bằng xảy ra khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(21b+\frac{3}{a}=\frac{3}{a}+\frac{a}{3}+\frac{62a}{3}\ge2\sqrt{\frac{3}{a}.\frac{a}{3}}+\frac{62.3}{3}=2+62=64\left(a\ge3\right)\left(1\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{a}=\frac{a}{3}\)và \(a=3\Leftrightarrow a=3\)
\(\frac{21}{b}+3b=\frac{21}{b}+\frac{7b}{3}+\frac{2b}{3}\ge2\sqrt{\frac{21}{b}.\frac{7b}{3}}+\frac{2.3}{3}=14+2=16\left(b\ge3\right)\left(2\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{21}{b}=\frac{7b}{3}\)và \(b=3\Leftrightarrow b=3\)
Từ (1) và (2) suy ra điều cần chứng minh.
Dấu "=" xảy ra \(\Leftrightarrow a=b=3\)
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}a\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}a-\frac{1}{8}b-\frac{1}{8}-\frac{1}{4}\)
\(\Sigma\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) :)
Áp dụng BĐT Cô-si cho 3 số dương ta có:
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)
Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)
Theo BĐT Cô - si ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)
(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))
Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)
\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)
\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)
\(\left(2\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)
\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)
\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)
Từ (1) , (2) và (3)
\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)
Chúc bạn học tốt !!!