K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

????????????????????????????

2 tháng 1 2018

Đề có sai không cậu ơi??

13 tháng 1 2016

\(\text{Ta có: }\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{c}{abc}+\frac{a}{abc}+\frac{b}{abc}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{a+b+c}{abc}\right)\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\text{ và }a+b+c=abc\)nên:

\(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{abc}{abc}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\)

23 tháng 2 2019

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

<=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2c}{abc}+\frac{2b}{abc}+\frac{2a}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2abc}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{b^2}+2=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\)

23 tháng 2 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{abc}{abc}=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

                            đpcm

4 tháng 3 2018

Có : 1/a + 1/b + 1/c = 2

<=> ( 1/a + 1/b + 1/c )^2 = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 + 2.(1/ab + 1/bc + 1/ca) = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 = 4 - 2.(1/ab + 1/bc + 1/ca)

                                        = 4 - 2.(a+b+c)/abc

                                        = 4 - 2 = 2

=> ĐPCM

Tk mk nha

30 tháng 12 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^2+2\left(\frac{1}{a}+\frac{1}{b}\right)\frac{1}{c}+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+2\frac{1}{a}.\frac{1}{b}+\left(\frac{1}{b}\right)^2+2\left(\frac{1}{ac}+\frac{1}{bc}\right)+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\left(\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{a+b+c}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

30 tháng 12 2017

ok thank bn

22 tháng 6 2021

vì \(a+b+c=1\)

\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)

\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

ta có pt:

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)

áp dụng bđt cô- si( cauchy) gọi pt là P 

\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)

\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)

\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)

\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

<=>ĐPCM