Tìm tích của 2015 số đầu tiên của dãy : \(-1\frac{1}{3}\);\(-1\frac{1}{8}\);\(-1\frac{1}{15}\);\(-1\frac{1}{24}\);...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(1\frac{1}{3}=\frac{4}{3}=\frac{2.2}{1.3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3.3}{2.4}\)
\(1\frac{1}{15}=\frac{16}{15}=\frac{4.4}{3.5}\)
\(...\)
\(1=\frac{4064256}{4064255}=\frac{2016.2016}{2015.2017}\)
Tích 2015 số đầu tiên của dãy là:
\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2016.2016}{2015.2017}\)
\(=\frac{2.2.3.3...2016.2016}{1.3.2.4...2015.2017}\)
Thấy tử và mẫu có 1 số thừa số chung nên ta rút gọn là:
=2.2.3.3...2016.2016/1.3.2.4...2015.2017
=2/2017
Ta có:\(1\frac{1}{3}=\frac{4}{3}\frac{2,2}{1,3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3,3}{2,4}\)
\(1\frac{1}{15}=\frac{10}{15}=\frac{4,4}{3,5}\)
\(1\frac{4064256}{4064256}=\frac{2016,2016}{2015,2017}\)
Tích 2015 số đầu tiên của số là:
\(\frac{2,2}{1,3},\frac{3,3}{2,4}......\frac{2016,2016}{2015,2017}\)
\(=\frac{2,2,3,3.....2016,2016}{2,3,2,4.....2015,2017}\)
Thấy tử và mẫu
có một thừa số chung nên ta rút gọn là:
=2/2017
Các số hạng của dãy được viết dưới dạng:
\(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};....\)
hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};....\)
=> Số thứ 2015 là \(\frac{2016^2}{2015.2017}\) Ta cần tính:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{2016^2}{2015.2017}\)
\(=\frac{\left(2.3.4.....2016\right)\left(2.3.4.....2016\right)}{\left(1.2.3.....2015\right)\left(3.4.5.....2017\right)}=\frac{2016.2}{1.2017}=\frac{4032}{2017}\)
Cho mình **** nha bạn
Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)
=> Số hạng thứ 98 là : \(\frac{99^2}{98.100}\)
=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)
Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)
=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)
Vậy ta cần tính tích:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)
= \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)
=\(\frac{99.2}{1.100}=\frac{99}{50}\)
Ta có: 96 số hạng đầu tiên của dãy
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{98}\)
\(\Rightarrow\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{99}{98}\)
=> Biểu thức = ?? ( tự rút gọn)
o mau cu cong tang dan
+3;+4;+5;+6;+7;+8;+..........................
2) Nhận xét :
2 = 1 . 1 + 1
5 = 2 . 2 + 1
10 = 3 . 3 + 1
17 = 4 . 4 + 1
26 = 5 . 5 + 1
Quy luật : Mỗi số hạng bằng số thứ tự của nó nhân với số thứ tự của nó rồi cộng với 1
Số hạng thứ 2015 của dãy là :
2015 . 2015 + 1 = 4060226
Đáp số : 4060226
2)
Nhận xét: 2=1.1+1
5=2.2+1
10=3.3+1
17=4.4+1
26=5.5+1
Quy luật :Mỗi số hạng của dãy bằng số thứ tự của nó nhân với số thứ tự của nó rồi cộng với 1
Số hạng thứ 2015 của dãy là:
2015.2015+1=4060226
đáp số 4060226