Tìm số tư nhiên x,n sao cho x4+24n+2 là một số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)
\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)
\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)
Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)
Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)
Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)
Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\)
mọi người giúp mình nhé
số tự nhiên n để các số n+3, 2n^2 +12n +19; 4n^2 +24n +37 là các số nguyên tố
A=n+3; B=n^2+12.n+19; C=4n^2+24n+37
B=2A^2+1
C=4A^2+1
n=0=>\(\hept{\begin{cases}A=3\\B=19\\C=37\end{cases}}\) n= nhận
\(Voi.n=2\left(chanduynhat\right)\)\(\hept{\begin{cases}A=5\\B=51\\C=101\end{cases}}\) Loại B chia hết cho 3
với n khác >2 vì A nguyên tố => n=2k vì nếu n lẻ=>A không nguyên tố.
k chỉ thể là \(\orbr{\begin{cases}3t+1\\3t+2\end{cases}}\) Vì nếu k=3t thì A chia hết cho 3 ko ntố
=> \(\orbr{\begin{cases}n=2\left(3t+1\right)\\n=2\left(3t+2\right)\end{cases}}\)\(A=\orbr{\begin{cases}6t+5\\6t+7\end{cases}}\)\(A^2=\orbr{\begin{cases}36t^2+60t+25\\36t^2+84t+49\end{cases}}\)
\(B=\orbr{\begin{cases}2\left(36t^2+60t+25\right)+1=3n+51\\2\left(36t^2+84t+49\right)+1=3m+99\end{cases}}\)=> B chia hết cho 3
kết luận: n =0 là giá trị duy nhất thỏa mãn đề bài
Lời giải:
$A=27n^3-45n^2+24n-4=(3n-2)^2(3n-1)$
Để $A$ là số nguyên tố thì 1 trong 2 thừa số $3n-2$ hoặc $3n-1$ phải là $1$ và số còn lại là số nguyên tố.
Nếu $3n-2=1$ thì $n=1$. Khi đó: $A=1^2.2=2$ là số nguyên tố (tm)
Nếu $3n-1=1$ thì $n=\frac{2}{3}\not\in\mathbb{N}$ (loại)
Vậy $n=1$.
a) \(2^n+22\)
Với \(n\ge1\)thì \(2^n⋮2,22⋮2\)khi đó \(2^n+22⋮2\)mà \(2^n+22>2\)nên khi đó \(2^n+22\)là hợp số.
Với \(n=0\): \(2^n+22=23\)thỏa mãn.
Vậy \(n=0\).
b) \(13n\)
Với \(n\ge2\)thì \(13n⋮13\)mà \(13n>13\)nên là số hợp số.
\(n=1\)thỏa mãn.
Ta có :
\(x^4+2^{4n+2}=x^4+x^2.2^{2n+2}+2^{4n+2}-x^2.2^{2n+2}=\left(x^2+2^{2n+1}\right)-\left(x.2^{n+1}\right)^2\)
\(=\left(x^2+2^{2n+1}-x.2^{n+1}\right)\left(x^2+2^{2n+1}+x.2^{n+1}\right)\)
Do x;n là số tự nhiên \(\Rightarrow x^2+2^{2n+1}+x.2^{n+1}>1\)
Vậy để \(x^4+2^{4n+2}\) là số nguyên tố \(\Leftrightarrow x^2+2^{2n+1}-x.2^{n+1}=1\)
\(\Leftrightarrow\left(x^2-2.x.2^n+2^{2n}\right)+2^{2n}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\)
\(\Rightarrow\orbr{\begin{cases}x-2^n=0\\2^{2n}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\n=0\end{cases}}}\)
Thử lại ta có : \(x^4+2^{4n+2}=1^4+2^{4.0+2}=1+4=5\) là số nguyên tố (TM)
Vậy \(x=1;n=0\) thì \(x^4+2^{4n+2}\) là số nguyên tố