Chứng minh rằng
a^2 chia 3 dư 1
a^2-1 chia hết cho 6
Giải chi tiết đầy đủ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2+2^2+2^3)+.....+(2^16+2^17+2^18+2^19)
A=1(1+2+2^2+2^3)+....+2^16(1+2+2^2+2^3)
A=1.15+.....+2^16.15
A=15(1+.....+2^16)
Suy ra A chia hết cho 15
Trước khi làm bài này, mình xin được phép cho bạn biết dấu hiệu chia hết cho 25:
Khi một số có 2 chữ số tận cùng tạo thành số chia hết cho 25 thì số đó chia hết cho 25, VD: Số 5625 chia hết cho 25 vì 2 chữ số tận cùng của nó tạo thành số 25 chia hết cho 25.
Bài giải
Ta có: abcd - cd = ab00 chia hết cho 25 vì 2 chữ số tận cùng của nó tạo thành số 00 chia hết cho 25.
NHỚ K CHO MÌNH NHA !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
abcd - cd = ab00. 25= 5.5
Mà ab00 luôn luôn chia hết cho 5 vì có số 0 ở cuối cùng
=> abcd - cd chia hết cho 25
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
abcabc=abc*1001
xet 1001 chia hết cho 7
thế là tích chia hết cho 7 thôi
1001/11=91 thế là cùng chia hết cho 11
còn chia 1001 cho 13 thì=77 thế là xong
nhớ tích
a chia 3 dư 1 => a=3x+1
b chia 3 dư 2 => b=3k+2
=>a*b=9kx+3k+6x+2 chia 3 dư 2
n2 chia cho chia 3 dư 1 thì ta chứng minh (n2-1) chia hết cho 3
ta có a = 3. q + 1 ( q là số tự nhiên)
b = 3 . p + 2 ( p là số tự nhiên)
a.b = (3q + 1)(3p + 2)
= 9qp + 6q + 3p + 2
tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.
\(7a+2b⋮2021;31a+9b⋮2021\)
\(\Rightarrow\hept{\begin{cases}9\left(7a+2b\right)-2\left(31a+9b\right)⋮2021\\31\left(7a+2b\right)-7\left(31a+9b\right)⋮2021\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a⋮2021\\-b⋮2021\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a⋮2021\\b⋮2021\end{cases}}\) (đpcm)