cho đa thức F(x)= (2017x-2018)2019
khi khai triển ta đc đa thức bậc 2019
Tính tổng các hệ số của các số hạng của đa thức sau khi khai triển
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Tổng các hệ số bậc chẵn khi khai triển đa thức 2 x − 1 2018 được tính bằng
S = C 2018 0 .2 2018 + C 2018 2 .2 2016 + C 2018 4 .2 2014 + ... + C 2018 2018 .2 0
Ta có x + 1 2018 = ∑ k = 0 2018 C 2018 k x 2018 − k ; − x + 1 2018 = ∑ k = 0 2018 C 2018 k − x 2018 − k
Cộng hai vế đẳng thức trên ta được
x + 1 2018 + − x + 1 2018 = 2 ( C 2018 0 x 2018 + C 2018 2 x 2016 + C 2018 4 x 2014 + ... + C 2018 2018 x 0 )
Với x = 2 ta có 3 2018 + 1 = 2. S ⇒ S = 3 2018 + 1 2
Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)
Gọi đa thức A(x) sau khi bỏ dấu ngoặc là :
\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)
Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)
Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)
Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)
Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng 0
Giả sử ta có : A(x) = 3x + 67 ; B(y) = y2 - 11 + 2y3
Thì : A(1) = 3.1 + 67 = 70
B(1) = 12 - 11 + 2.13 = - 8
Vậy thì tổng các hệ số của hạng tử trong đa thức chính là tổng các hạng tử của đa thức có biến là 1 .
Sau đó thì bạn thay 1 vào P(x) rồi tìm được kết quả là 1
Cái chính là hiểu bạn chất vấn đề , còn chỗ giả sử kia không phải ghi vào vở đâu nhé !
Chúc bạn học chăm !!!
Hệ số lớn nhất sẽ tương ứng với số hạng đứng chính giữa
=>Hệ số lớn nhất là \(C^{51}_{101}\)
đáp án =-1