K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

đề sai rồi.vd:5,-1,-2

3 tháng 9 2018

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\),xyz=1  

Cần CM: \(1+\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{6}{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}\) 

\(\Leftrightarrow1+\frac{3}{xy+yz+zx}\ge\frac{6}{x+y+z}\) 

Thật vậy \(1+\frac{3}{xy+yz+zx}\ge1+\frac{9}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{9}{x+y+z}}=\frac{6}{x+y+z}\)(đpcm) 

Dấu "=" xảy ra khi a=b=c=1

10 tháng 4 2017

\(\hept{\begin{cases}a+b+c=0\\ab+bc+ca+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=-2\left(ab+bc+ca\right)\\-\left(ab+bc+ca\right)=3\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2=6\)

\(\Rightarrow a^2\le6\)

\(\Leftrightarrow-2\le a\le2\)

 \(\Rightarrow\) a \(\in\){ -2; - 1; 0; 1; 2}

Thế a = - 2 vào hệ ban đầu ta được

\(\Rightarrow\hept{\begin{cases}b+c=2\\-2b+bc-2c+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=1\\c=1\end{cases}}\) 

Tương tự cho các trường hợp còn lại 

11 tháng 4 2017

10000

13 tháng 11 2018

khó quá nha bn

mk mới chỉ hok lớp 7 thôi

xin lỡi nha

mk tin sẽ có nguoi tra lới cau hoi của bn

hok tot >_<