Cho x và y là 2 số thực thõa mãn x^2+ y^2 =1
Hãy tìm giá trị lớn nhất cho biểu thức M= x^5+ 2y
Giúp mình với😇
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x+ y= 1 nên
S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y , d o x + y = 1 = 16 x 2 y 2 - 2 x y + 12
Đặt t= xy . Do x≥ 0 ; y≥0 nên
0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4
Xét hàm số f(t) = 16t2- 2t + 12 trên [0 ; 1/4].
Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16 .
Bảng biến thiên
Từ bảng biến thiên ta có:
m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ; m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2
Vậy giá trị lớn nhất của S là 25/2 đạt được khi
x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2
giá trị nhỏ nhất của S là 191/ 16 đạt được khi
Chọn A.
Ta có : \(x^2+y^2=4< =>x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(< =>4\ge\frac{\left(x+y\right)^2}{2}< =>\left(x+y\right)^2\le4.2=8< =>x+y\le\sqrt{8}\)
Hay \(x+y\le\sqrt{8}\)
Dấu = xảy ra khi và chỉ khi \(x=y=\sqrt{2}\)
Vậy GTLN của P = \(\sqrt{8}\)đạt được khi và chỉ khi \(x=y=\sqrt{2}\)
Bài này hơi căng đấy, theo cách tao nhã nào đó, nó có thể là một bề dày không hoen ố.
Dễ dàng chứng minh được bđt sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(i\right)\)
Thật vậy, áp dụng bđt \(B.C.S\) cho bộ số bao gồm \(\left(1;1\right)\) và \(\left(x^2;y^2\right)\) ta được:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\) \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Hay nói cách khác, \(\sqrt{2\left(x^2+y^2\right)}\ge x+y\)
Dấu \("="\) xảy ra khi \(x=y\)
Vậy, bđt đã cho được chứng minh!
Theo như cách đề bài đã chọn, để biểu thức \(A\) có giá trị lớn nhất thì \(\frac{1}{A}\) phải đạt giá trị nhỏ nhất hay ta phải tìm \(P_{min}\)(với \(P=\frac{1}{A}\)\(\Rightarrow\) \(P\in Z^+\))
Ta có: \(P=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Lại có: \(4=x^2+y^2\ge2xy\) \(\Rightarrow\) \(2\ge xy\) (theo bđt Cauchy cho hai số \(x^2,y^2\) không âm)
nên \(P\ge\frac{1}{x}+\frac{1}{y}+1\)
Mặt khác, tiếp tục áp dụng bđt \(Cauchy-Schwarz\) dạng \(Engel\) cho bộ số gồm \(\left(\frac{1}{x};\frac{1}{y}\right)\) đối với \(P,\)ta có:
\(P\ge\frac{4}{x+y}+1\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}+1=\frac{4}{\sqrt{2.4}}+1=\sqrt{2}+1\) (theo bđt \(\left(i\right)\) )
Do đó, \(P_{min}=\sqrt{2}+1\) tức là \(\frac{1}{A}\) đạt giá trị nhỏ nhất là \(\sqrt{2}+1\)
Vậy, dễ dàng suy ra được \(A_{max}=\frac{1}{\sqrt{2}+1}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x,y>0\\x^2+y^2=4\\x=y\end{cases}\Leftrightarrow}\) \(x=y=\sqrt{2}\)
Cho x;y là các số thực thõa mãn \(x^2+y^2-xy=4\). Giá trị lớn nhất của biểu thức A= \(x^2+y^2\)bằng?
vì x,y>0
p/4=x^2+y^2/x^2+y^2-xy
đặt x/y=a>0
p/4=a^2+1/a^2-a+1 suy ra P(a^2-a+1=4(a^2+1) suy ra a^2(P-4)-Pa+P-4=0
ta có P^2-4(P-4)^2_>0 suy ra 8/3_< P_<8
ak dấu _< là lớn hơn hoặc bằng nha
k mk nữa
Ta có: \(x+y+z=xyz\Leftrightarrow x=\frac{x+y+z}{yz}\Leftrightarrow x^2=\frac{x^2+xy+xz}{yz}\Leftrightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
Tương tự, ta được: \(\frac{1}{\sqrt{y^2+1}}=\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}\); \(\frac{1}{\sqrt{z^2+1}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
Cộng theo từng vế ba đẳng thức trên, ta được: \(P=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)\(\le\frac{\frac{y}{x+y}+\frac{z}{z+x}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}+\frac{y}{y+z}}{2}=\frac{3}{2}\)(BĐT Cô-si)
Đẳng thức xảy ra khi x = y = z = \(\sqrt{3}\)