K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2020

https://olm.vn/hoi-dap/detail/81117789731.html

bạn tham khảo

9 tháng 5 2020

Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)

\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)

Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)

5 tháng 2 2018

Sửa đề trong bài làm luôn nhé

\(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)

\(\Rightarrow\frac{a+2b-c}{x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}\)

\(\Rightarrow\frac{a+2b-c}{x}=\frac{2\left(2a+b+c\right)}{2y}=\frac{4b+c-4a}{z}=\frac{9a}{x+2y-z}\left(1\right)\)

\(\Rightarrow\frac{2\left(a+2b-c\right)}{2x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}=\frac{9b}{2x+y+z}\left(2\right)\)

\(\Rightarrow\frac{-4\left(a+2b-c\right)}{-4x}=\frac{4\left(2a+b+c\right)}{4y}=\frac{4b+c-4a}{z}=\frac{9c}{-4x+4y+z}\left(3\right)\)

Từ (1), (2), (3) ta có ĐPCM

6 tháng 4 2018

Ta có \(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)

\(\Rightarrow\frac{x}{a+2b-c}=\frac{2y}{4a+2b+c}=\frac{z}{4b+c-4a}=\frac{x+2y-z}{9a}\left(1\right)\)

\(\Rightarrow\frac{2x}{2a+4b-2c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}=\frac{2x+y+z}{9b}\left(2\right)\)

\(\Rightarrow\frac{4x}{4a+8b-4c}=\frac{4y}{8a+4b+4c}=\frac{z}{4b+c-4a}=\frac{4y+z-4a}{9c}\left(3\right)\)

Từi (1),(2),(3) 

còn j giải típ nha

@@@@@@@@@@@@

20 tháng 7 2016

Xét : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{2}{abc}.\left(a+b+c\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(Vì a + b + c = 0)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) (đpcm)

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)