Một nhà toán học đã nói :
Mọi số nguyên dương chẵn lớn hơn 2 đều có thể viết dưới dạng tổng của hai số nguyên tố . Hãy chứng minh điều này là đúng .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)6=2+2+2
7=2+2+3
8=2+3+3
b) moi so chan >2 deu duoc viet duoi dang 2k
=> 2k = x+y (voi x,y la 2 so nguyen to)
vi 2k chia het cho 2 =>de 2k=x+y thi 2k chia het cho 2
vi x,y 2 so nguyen to =>x,y=2 hoac 2a+1
xet x=2a+1, y= 2a+1
=>x+y = 2a+1+2a+1=4a+2 chia het cho 2 (TM)
xet x=2,y=2
=>x+y=4chia het cho 2(TM)
vi x+y chia het cho 2=> 2k=x+y voi x,y la 2 so nguyen to
=>moi so chan >2 deu co the viet duoi dang tong cua 2 so nguyen to
a) Euler phát biểu như sau: " Mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố . "
Nên ta có bài giải sau:
6 = 2 + 4
=> 6 = 2 + 2 + 2
7 = 3 + 4
=> 7 = 3 + 2 + 2
8 = 2 + 6
=> 8 = 2 + 2 + 4
Vậy 6 = 2 + 2 + 2
7 = 3 + 2 + 2
8 = 2 + 2 + 4
a) Euler phát biểu như sau: "mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố"
Nên ta có bài giải sau:
6=2+4 (với 4 là số chẳn >2 nên như phát biểu Euler thì sẽ 4 sẽ viết được dưới dạng tổng của 2 số nguyên tố)
=> 6=2+2+2
7=3+4 (lập luận như trên ta cũng có kết quả)
=> 7=3+2+2
8 Hoàn toàn tương tự 6
=> 8=2+6=2+2+4
a, Ta có :
6=2+2+2 7=2+3+2 8=2+3+3
b, Ta có:
30=13+17 32=13+19
Đáp án là : ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Đi hỏi ông nhà toán học đó là xong!