K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

ĐK: \(y\ne1;y\ne3\).

Ta có \(\dfrac{y+5}{y-1}-\dfrac{y+1}{y-3}=\dfrac{-8}{\left(y-1\right)\left(y-3\right)}\)

\(\Leftrightarrow\dfrac{\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y-3\right)}=\dfrac{-8}{\left(y-1\right)\left(y-3\right)}\)

\(\Rightarrow\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)=-8\Leftrightarrow\left(y^2+2y-15\right)-\left(y^2-1\right)=-8\Leftrightarrow2y-14=-8\Leftrightarrow y=3\). (loại)

Vậy không tồn tại y thỏa mãn

a: \(N=\left(\dfrac{1}{y-1}+\dfrac{1}{\left(y-1\right)\left(y^2+y+1\right)}\cdot\dfrac{y^2+y+1}{y+1}\right)\cdot\left(y^2-1\right)\)

\(=\dfrac{y+1+1}{\left(y-1\right)\left(y+1\right)}\cdot\left(y^2-1\right)=y+2\)

b: Thay y=1/2 vào N, ta được:

N=1/2+2=5/2

c: Để N>0 thì y+2>0

hay y>-2

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}y>-2\\y\notin\left\{-1;1\right\}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
a. ĐKXĐ: $y\neq \pm 1$

\(N=\left(\frac{1}{y-1}-\frac{1}{(1-y)(1+y+y^2)}.\frac{y^2+y+1}{y+1}\right).(y^2-1)\)

\(=(\frac{1}{y-1}-\frac{1}{(1-y)(y+1)})(y-1)(y+1)\)

\(=\frac{1}{y-1}(y-1)(y+1)-\frac{1}{-(y-1)(y+1)}.(y-1)(y+1)=y+1-(-1)=y+2\)

b. Khi $y=\frac{1}{2}$ thì:
$N=\frac{1}{2}+2=\frac{5}{2}$

c. Để $N>0\Leftrightarrow y+2>0\Leftrightarrow y>-2$

Kết hợp đkxđ suy ra $y>-2$ và $y\neq \pm 1$ thì $N$ dương.

 

27 tháng 5 2021

ĐK: \(x\ne-\dfrac{2}{3};x\ne3\)

\(\dfrac{6x-1}{3x+2}=\dfrac{2x+5}{x-3}\Rightarrow\left(6x-1\right)\left(x-3\right)=\left(2x+5\right)\left(3x+2\right)\)

\(\Leftrightarrow6x^2-19x+3=6x^2+19x+10\Leftrightarrow38x=-7\Leftrightarrow x=-\dfrac{7}{38}\).

27 tháng 5 2021

ĐKXĐ : x ≠ -2/3 ; x ≠ 3

\(\dfrac{6x-1}{3x+2}=\dfrac{2x+5}{x-3}\Rightarrow\left(6x-1\right)\left(x-3\right)=\left(3x+2\right)\left(2x+5\right)\)

\(\Leftrightarrow6x^2-19x+3=6x^2+19x+10\)

\(\Leftrightarrow-38x=7\Leftrightarrow x=-\dfrac{7}{38}\)(tm)

Vậy ...

22 tháng 12 2020

ối lắm thế :((

3.

a/ Giả sử đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là k

=> y = k/x

Thay x = 8 ; y = 15 vào ct y = k/x ta có

\(\dfrac{k}{8}=15\Rightarrow k=120\)

Thay \(k=120\) vào ct \(y=\dfrac{k}{x}\) ta có

\(y=\dfrac{120}{x}\)

b/ Thay x = 6 vào ct \(y=\dfrac{120}{x}\) ta có

\(y=\dfrac{120}{6}=20\)

Thay x = - 10 vào ct \(y=\dfrac{120}{x}\) ta có

\(y=\dfrac{120}{-10}=-12\)

b/ Thay y = 2 vào ct \(y=\dfrac{120}{x}\) ta có

\(2=\dfrac{120}{x}\Rightarrow x=60\)

Thay y = - 30 vào ct \(y=\dfrac{120}{x}\) ta có

\(-30=\dfrac{120}{x}\Rightarrow x=-4\)

4/

a/ Giả sử đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là k

=> y = xk

Thay y = 4 ; x = 6 vào ct y = xk ta có

\(4=6k\Rightarrow k=\dfrac{2}{3}\)

Thay \(k=\dfrac{2}{3}\) vào ct y = xk ta có

\(y=\dfrac{2}{3}x\)

b/ Thay x = 9 vào ct \(y=\dfrac{2}{3}x\)  ta có

\(y=\dfrac{2}{3}.9=6\)

Thay y = - 8 vào ct \(y=\dfrac{2}{3}x\) ta có

\(-8=\dfrac{2}{3}x\Rightarrow x=-12\)

 

22 tháng 12 2020

=(( biết căn bậc hai x=9 nhưng khum biết trình bày,huhu

 

 

8 tháng 12 2021

ĐK: \(3x\ne\pm y;x\ne0\)

A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)

\(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)

Thay x = 1; y=2, ta có:

A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi

11 tháng 3 2016

Xin lỗi! Mình mới học lớp 5 thôi à!

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)

\(A=\dfrac{1}{2\left(\sqrt{a}+1\right)}-\dfrac{1}{2\left(\sqrt{a}-1\right)}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{\sqrt{a}-1-\sqrt{a}-1}{2\left(a-1\right)}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{-1}{a-1}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{-a-1+a^2+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{a^2-a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a+1}\)

b: Để A-1/3<0 thì \(\dfrac{a}{a+1}-\dfrac{1}{3}< 0\)

=>3a-a-1<0

=>2a-1<0

hay 0<a<1/2

9 tháng 6 2021

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2