Cho tam giác ABC, A=90°, AB=1/2 BC, tia phân giác của A cắt BC ở E. Từ E kể đường thẳng vuông góc với BC cắt AB tại F. Kẻ EH vuông góc với AB, H thuộc AB. CMR: EF=EC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
23 tháng 1
a: Ta có: BM//EF
EF\(\perp\)AH
Do đó: AH\(\perp\)BM
Xét ΔAMB có
AH là đường cao
AH là đường phân giác
Do đó: ΔAMB cân tại A
b: Xét ΔAFE có
AH vừa là đường cao, vừa là đường phân giác
Do đó: ΔAFE cân tại A
=>AF=AE
Ta có: AF+FM=AM
AE+EB=AB
mà AF=AE và AM=AB
nên FM=EB
Xét ΔCMB có
D là trung điểm của CB
DF//MB
Do đó: F là trung điểm của CM
=>CF=FM
=>CF=FM=EB
TH
8 tháng 1 2018
xét tứ giác ABDM
có ^A=90 o ( tam giác ABC vuông tại A theo gt )
^D = 90 o ( gt )
=> ^A + ^D = 180 o
=> t/g ABDM là t/g nội tiếp ( dhnb )
=> góc BAD = góc BMD ( góo nội tiếp cùng chắn cung BD )
lại có ^ BAD = 1/2 ^ BAC = 1/2 90 o = 45 o
=> ^BMD = 45 o