K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Ta có :

\(\sqrt{2017^2-1}-\sqrt{2016^2-1}=\frac{2017^2-1-2016^2+1}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}=\frac{2017+2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

\(>\frac{2016+2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}=\frac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

Vậy \(\sqrt{2017^2-1}-\sqrt{2016^2-1}>\frac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

\(A=\sqrt{\left(2017-1\right)\left(2017+1\right)}-\sqrt{\left(2016-1\right)\left(2016+1\right)}\)

\(=\sqrt{2016.2018}-\sqrt{2015.2017}< \sqrt{2018.2018}-\sqrt{2015.2015}\)

\(=2018-2015=3\)

\(\Rightarrow\frac{1}{A}>\frac{1}{3}\)

\(B=\frac{2.2016}{A}>\frac{2.2016}{3}=1344>3>A\)

Vậy ta được B lớn hơn A rất nhiều :))

10 tháng 10 2017

ta có: \(\left(\sqrt{2017^2-1}-\sqrt{2016^2-1}\right)\left(\sqrt{2017^2-1}+\sqrt{2016^2-1}\right)\)

= 20172-1 - (20162-1)

= 20172-20162

= 2017+2016 > 2.2016

=> \(\sqrt{2017^2-1}-\sqrt{2016^2-1}\)\(>\) \(\frac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

10 tháng 10 2017

em ko biết

17 tháng 8 2017

Ta có:

\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)

\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)

Suy ra:

\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)

Vậy Q < R.

26 tháng 11 2021

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

26 tháng 11 2021

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)

7 tháng 7 2017

Với mọi \(n\in N.\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó

\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)

24 tháng 9 2016

\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)

4 tháng 11 2018

\(\sqrt{2017^2-1}-\sqrt{2016^2-1}=\dfrac{2017^2-1-2016^2+1}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}=\dfrac{\left(2017-2016\right)\left(2017+2016\right)}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}=\dfrac{1+2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}>\dfrac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

4 tháng 11 2018

vcl hai quay lai cay hoc 24 a

14 tháng 6 2017

a )\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)

=\(\sqrt{2+3+1+2\sqrt{2.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}}\)

=\(\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}\)

=\(\sqrt{2}+\sqrt{3}+1\)