cho hàm số y = -1x
a, vẽ đồ thị (d) của hàm số
b, gọi M là điểm có tọa độ là (1; 1,5) điểm M có thuộc D ko ? vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Hình vẽ:
b. Vì điểm $A$ thuộc đths nên $A$ có tọa độ $(a,3a)$
$OA=\sqrt{a^2+(3a)^2}=2\sqrt{10}$
$\sqrt{10a^2}=2\sqrt{10}$
$10a^2=400$
$a=\pm 2$
Vậy tọa độ điểm A là $(2,6)$ hoặc $(-2,-6)$
1: Bạn bổ sung đề bài đi bạn
2: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)
=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)
=>OB=4
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{4}{\left|2m-1\right|}=4\)
=>\(\dfrac{1}{\left|2m-1\right|}=1\)
=>\(\left|2m-1\right|=1\)
=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
\(b,\text{PT giao }Ox:y=0\Leftrightarrow x=6\Leftrightarrow A\left(6;0\right)\Leftrightarrow OA=6\\ \text{PT giao }Oy:x=0\Leftrightarrow y=3\Leftrightarrow B\left(0;3\right)\Leftrightarrow OB=3\\ \Leftrightarrow S_{OAB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot6\cdot3=9\left(đvdt\right)\)
b) Thay x=3 vào y=x, ta được:
\(y=3=y_A\)
Vậy: A(3;3) thuộc (d)
b) Vì M(3;m) thuộc đồ thị hàm số y=-|x| nên Thay x=3 và y=m vào hàm số \(y=-\left|x\right|\), ta được:
\(m=-\left|3\right|\)
\(\Leftrightarrow m=-3\)
Vậy: M(3;-3)
Lời giải:
a.
Đồ thị xanh lá: $y=2x+1$
Đồ thị xanh dương: $y=x-3$
b.
PT hoành độ giao điểm:
$y=2x+1=x-3$
$\Leftrightarrow x=-4$
$y=x-3=(-4)-3=-7$
Vậy tọa độ điểm $M$ là $(-4;-7)$
a) vẽ đồ thị của hàm số \(y=-x\)
đồ thị hàm số \(y=-x\)là 1 đường thẳng đi qua gốc tọa độ \(O\left(0;0\right)\)và 1 điểm \(A\left(1;-1\right)\)
b)