Tìm n để :
4n + 3 chia chết cho 2n + 1
4n - 5 chia hết cho 13
Mk đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n + 3 chia hết cho 2n + 6
(2n+6).2 chia hết cho 2n+6 => 4n + 12 chia hết cho 2n + 6
4n+3 chia hết cho 2n +6
4n+12 chia hết cho 2n + 6
=> 4n + 12 - 4n - 3 = 9 chia hết cho 2n +6
2n +6 thuộc {1;3;9}
n thuộc {-2,5;-1,5;1,5}
Trong các phần tử trên, không có phần tử nào thuộc N
=> Không tìm được số tự nhiên n sao cho 4n+3 chia hết cho 2n+6
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
\(4n+3⋮3n+2\)
\(12n+9⋮3n+2\)
\(4\left(3n+2\right)-3⋮3n-2\)
\(-3⋮3n+2\)hay \(3n+2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
dễ rồi tự làm nhé !
\(n-5⋮2n+3\)
\(2n-10⋮2n+3\)
\(2n+3-13⋮2n+3\)
\(-13⋮2n+3\)hay \(2n+3\inƯ\left(-13\right)=\left\{\pm1;\pm13\right\}\)
dễ rồi tự làm nhé !
a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
a) ta có: n^2 - 1 chia hết cho n + 2
=> n^2 + 2n - 2n - 4 + 3 chia hết cho n +2
n.(n+2) - 2.(n+2) + 3 chia hết cho n +2
(n+2).(n-2) + 3 chia hết cho n + 2
mà (n+2).(n-2) chia hết cho n + 2
=> 3 chia hết cho n + 2
=> ...
rùi bn tự lm típ nha
b) ta có: 4n + 3 chia hết cho 3n - 1
=> 12n + 9 chia hết cho 3n - 1
12n - 4 + 13 chia hết cho 3n - 1
4.(3n - 1) + 13 chia hết cho 3n - 1
mà 4.(3n-1) chia hết cho 3n - 1
...
câu c mk ko bk! xl bn nha
d) n^2 + 2n + 3 chia hết cho n + 2
=> n.(n+2) + 3 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
e) ta có: 3 - 2n chia hết cho 5n - 1
=> 15 - 10n chia hết cho 5n - 1
13 - 10n + 2 chia hết cho 5n - 1
13 - 2.(5n - 1) chia hết cho 5n - 1
mà 2.(5n-1) chia hết cho 5n-1
...
phần g bn dựa vào phần e mak lm nha
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html